MHIF FEATURED STUDY: MINT

CONDITION: Myocardial Ischemia and Transfusion

PI: Jay Traverse, MD

RESEARCH CONTACT: Rose Peterson

SPONSOR: NIH Trial

Evidence suggests it is safe to wait to give a blood transfusion; however, for those who have suffered a heart attack, there is a lack of high quality evidence to guide transfusions. The study’s results will influence transfusion practice worldwide.

• DESCRIPTION:

MINT is a multicenter randomized clinical trial comparing red blood cell transfusion strategies for patients who have had a myocardial infarction and are anemic (positive troponins and a hemoglobin of less than 10 g/dL).

The trial will enroll 3500 hospitalized patients diagnosed with myocardial infarction who are anemic (have blood counts less than 10 g/dL) to receive either a liberal or a restrictive transfusion strategy. Patients will be followed for 6 months to assess how well they are recovering from their heart attack.

• CRITERIA LIST/ QUALIFICATIONS:

Inclusion

Positive Troponin and a hemoglobin of less than 10 g/dL
Minneapolis Heart Institute Foundation® Cardiovascular Grand Rounds

Title: Aortic Case Carousel
Speaker(s): Karol Mudy, MD
Cardiac Surgeon
Minneapolis Heart Institute® at Abbott Northwestern Hospital
Date: October 15, 2018
Time: 7:00 – 8:00 AM
Location: ANW Education Building, Watson Room

OBJECTIVES
At the completion of this activity, the participants should be able to:
1. Describe indications for more extensive repair in Type A aortic dissections.
2. Discuss the strategies for cerebral protection using hypothermia and cerebral perfusion.
3. Describe benefits of multidisciplinary approach and hybrid room utilization for Type A aortic dissections.

ACCREDITATION
Physician - Allina Health is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. Allina Health designates this live activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

Nurse - This activity has been designed to meet the Minnesota Board of Nursing continuing education requirements for 1.0 hours of credit. However, the nurse is responsible for determining whether this activity meets the requirements for acceptable continuing education.

DISCLOSURE POLICY & STATEMENTS
Allina Health, Learning & Development intends to provide balance, independence, objectivity and scientific rigor in all of its sponsored educational activities. All speakers and planning committee members participating in sponsored activities and their spouse/partner are required to disclose to the activity audience any real or apparent conflict(s) of interest related to the content of this conference.

The ACCME defines a commercial interest as “any entity” producing, marketing, re-selling, or distributing health care goods or services consumed by, or used on, patients. The ACCME does not consider providers of clinical service directly to patients to be commercial interests - unless the provider of clinical service is owned, or controlled by, an ACCME-defined commercial interest.

Moderator(s)/Speaker(s)
Dr. Karol Mudy has disclosed that he DOES NOT have any real or apparent conflicts with any commercial interest as it relates to presenting his content in this activity/course.

Planning Committee
Dr. Alex Campbell, Jake Cohen, Jane Fox, Dr. Mario Gössl, Dr. Kevin Harris, Dr. Kasia Hryniewicz, Rebecca Lindberg, Amy McMeans, Dr. Michael Miedema, Dr. JoEllyn Moore, Pamela Morley, Dr. Scott Sharkey, and Jolene Bell Makowesky have disclosed that they DO NOT have any real or apparent conflicts with any commercial interest as it relates to the planning of this activity/course. Dr. David Hurrell has disclosed the following relationship –Boston Scientific: Chair, Clinical Events Committee.
NON-ENDORSEMENT OF COMMERCIAL PRODUCTS AND/OR SERVICES

We would like to thank the following company for exhibiting at our activity.

Actelion Pharmaceuticals Janssen

Accreditation of this educational activity by Allina Health does not imply endorsement by Allina Learning & Development of any commercial products displayed in conjunction with an activity.

A reminder for Allina employees and staff, the Allina Policy on Ethical Relationship with Industry prohibits taking back to your place of work, any items received at this activity with branded and or product information from our exhibitors.

PLEASE SAVE YOUR SERIES FLIER

When you request a transcript this serves as your personal tracking of activities attended. Most professional healthcare licensing/certification boards will not accept a Learning Management System (LMS) transcript as proof of credit; there are too many LMS’s across the country and their validity/reliability are always in question.

If audited by a licensing board or submitting for license renewal or certification renewal, boards will ask you not the entity providing the education for specific information on each activity you are using for credit. You will need to demonstrate that you attended the activity with a copy of your certificate/evidence of attendance, a brochure/flier and/or the conference handout.

Each attendee at an activity is responsible for determining whether an activity meets their requirements for acceptable continuing education and should only claim those credits that he/she actually spent in the activity.

Maintaining these details are the responsibility of the individual.

PLEASE SAVE A COPY OF THIS FLIER AS YOUR CERTIFICATE OF ATTENDANCE.

Signature: __

My signature verifies that I have attended the above stated number of hours of the CME activity.

Allina Health - Learning & Development - 2925 Chicago Ave - MR 10701 - Minneapolis MN 5540
Disclosures

• No conflict of interests…
• Well…
• I really like it
Objectives

1. Understand the benefits of multidisciplinary approach to complex aortic pathology
2. Identify the patients that benefit from complete aortic reconstruction in Type A dissection
3. Describe the strategies of cerebral protection during complex aortic surgery
Components of Type A/ Type I Repair

<table>
<thead>
<tr>
<th>STANFORD</th>
<th>Type A</th>
<th>Type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBAKEY</td>
<td>Type I</td>
<td>Type II</td>
</tr>
<tr>
<td></td>
<td>Type III</td>
<td></td>
</tr>
</tbody>
</table>

NORMAL
Goal

Thrombosis of false lumen and aortic remodeling (healing)!!!!

Type B Aortic Dissection: INSTEAD-XL

Endovascular Repair of Type B Aortic Dissection
Long-term Results of the Randomized Investigation of Stent Grafts in Aortic Dissection Trial

Christoph A. Niethammer, MD, PhD; Stephan Kische, MD; Hervé Rousseau, MD, PhD; Holger Eggebrecht, MD; Tina C. Rehders, MD; Guenter Kinzl, MD, PhD; Anne Glass, MA; Derk Schneiter, MD, PhD; Martin Czerny, MD, PhD; Tilio Kleinfeld, MD; Burkhard Zipfel, MD; Louis Labrousse, MD; Rosella Pattori, MD, PhD; Hüseyin Incle, MD, PhD; for the INSTEAD-XL trial

Background—Thoracic endovascular aortic repair (TEVAR) represents a therapeutic concept for type B aortic dissection. Long-term outcomes and morphology after TEVAR for uncomplicated dissection are unknown.

Methods and Results—A total of 140 patients with stable type B aortic dissection previously randomized to optimal medical treatment and TEVAR (n=72) versus optimal medical treatment alone (n=68) were analyzed retrospectively for aorto-specific, all-cause outcomes, and disease progression using landmark statistical analysis of years 2 to 5 after index procedure. Cox regression was used to compare outcomes between groups. All analyses are based on intention to treat.

The risk of all-cause mortality (11.1% versus 9.3%; P=0.13), aorta-specific mortality (6.9% versus 9.9%; P=0.45), and progression (>7.6% yearly aortic diameter expansion) after 5 years was lower with TEVAR than with optimal medical treatment alone. Landmark analysis suggested a benefit of TEVAR for all end points between 2 and 5 years for example, for all-cause mortality (6% versus 16.5%; P=0.02), aorta-specific mortality (6% versus 16.6%; P=0.005), and for progression (4.1% versus 28.1%; P=0.001). Landmarking at 1 year and 1 month revealed consistent findings. Both improved survival and less progression of dis ease at 5 years after elective TEVAR were associated with stent graft induced false lumen thrombosis in 90.6% of cases (P=0.001).

Conclusion—In this study of survivors of type B aortic dissection, TEVAR in addition to optimal medical treatment is associated with improved 5-year aorta-specific survival and delayed disease progression. In stable type B dissection with suitable anatomy, preemptive TEVAR should be considered to improve late outcomes.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT01415804. (Cite Cardiovasc Interv. 2013;6;487-496.)
Components of Type A/ Type I Repair

- Traditional:
 - Confirm on CT
 - Examine the patient- neurological; vascular
 - Go to OR
 - Cool
 - Replace ascending aorta
 - Address the root (AVR, re-suspend AV, Bentall)
 - Hemiarch- DHCA, look for tears, sew graft, re-clamp, rewarm
Traditional Approach

Limitations of Traditional Approach to Type A repair

- High rate of re-interventions and specifically aortic events
 - 20-30% at 5 years (false lumen patency - up to 100%!!)
 - Reinterventions often large/risky operations
 - No landing zone for endo
 - Arch branch devices limited in chronic dissection flaps
 - Limitation of options for staging
 - increased risk of spinal cord ischemia
 - Patients older, sicker
Components of Type A/ Type I Repair

• Interdisciplinary (TEAM) approach:
 – Meet in ED (Cardiac, Vascular, Anesthesia, ...)
 – Examine the patient- neurological; vascular
 – Review imaging- preliminary plan for type of surgery/ extent/ stratify the risk
 – Hybrid room- EACH TIME!
 – CPB/ hypothermia/ cerebral and spinal protection strategy
 – Cannulation strategy/ IVUS/ aortogram

Components of Type A/ Type I Repair

• Interdisciplinary approach:
 – addressing malperfusion simultaneously with a proximal repair- maximize elimination of tears in arch and proximal descending aorta
 – Arch vessels repaired first- shorter cerebral and spinal ischemia- elimination of majority of dissection flaps from head vessels
 – In case of a need for future repair of descending aorta- stable landing zone (endovascular) and no need for arch surgery
Total Arch Replacement with Trifurcated Graft and Frozen Elephant trunk- FET
Addressing Malperfusion

- Evaluation of visceral vessels intraoperatively
 - Dynamic vs static obstruction
Brain Perfusion and Protection

- Selective, followed by bilateral Antegrade Cerebral Perfusion (ACP) - 0.8 → 1.2 l/min (1ml/kg/min)
- Deep hypothermia - 18 degrees Celsius
- NIRS monitoring
Bilateral NIRS

Branches of vertebral artery
1. Meningeal branch
2. Posterior Spinal Artery
3. Anterior Spinal Artery
4. Medullary Arteries
5. Posterior Inferior Cerebellar Artery (PICA)

Bilateral NIRS

Bilateral NIRS

Total Arch Replacement with Trifurcated Graft and Frozen Elephant Trunk- FET
ML- 43 yo Male with Type I Aortic Dissection

- HPI: acute shortness of breath while vacationing in Duluth (PMH- Marfan- S/P “pectus excavatum” repair)
- Respiratory failure- BiPAP→ aspiration→ intubation
- Echo- severe AI, LVEF 20-25%
- CT chest, abdomen, pelvis- type I dissection—flap ending just distal to LSCA

ML- Presentation at ANW

- Accepted for transfer with a diagnosis of type I dissection
- Intubated, “aspiration pneumonia”
- Metabolic acidosis
 - Lactate 4
- Liver failure
 - INR 2.9
- Renal failure
 - Cr 2.2
ML- presentation at ANW

• ICU, cardiac and vascular surgery consulted
• Emergent OR for a repair
OR- 6/9/2018

- Aortic root replacement using a composite valve graft made of 29 mm Magna Ease bioprosthetic valve and 34 mm Valsalva Gelweave graft, coronary implantation, total aortic arch replacement using trifurcated graft to debranch the head vessels, FET 31 mm X10 to zone 0, ascending aortic replacement, axillary cannulation, IVUS, central ECMO placement using right axillary artery graft and percutaneous 25-French venous cannula through the left groin

OR- 6/9/2018

- CARDIOPULMONARY BYPASS DATA:
 - 1. Cardiopulmonary bypass time 432 minutes.
 - 2. Cross clamp time 247 minutes.
 - 3. Circulatory arrest time 6 minutes.
 - 4. Lower body ischemia time 94 minutes
 - DHCA 18 Celsius
 - SACP and BACP
ECMO Weaning

- LVAD evaluation- eligible
- Resolving liver and renal failure
- Head CT- normal
- EEG- no seizure activity
OR- 6/12/2018

- Chest washout and chest closure
OR- 6/14/2018

- ICU bedside ECMO decannulation
 - Successful ECMO “weans”
- No LVAD
- Extubated 6/19/2018
- Slow BiPAP wean, no need for reintubation
- Transfer to telemetry- 6/25/2018
- Echo- 20-25%
2 weeks out

• 72yo male
• PMH- diverticulitis treated medically
• Otherwise- healthy
Operative Course

- Ascending replacement with resuspension of the aortic valve
- Total Arch Repair with trifurcated graft - Proximal anastomosis from ascending graft
- Frozen elephant trunk - 34mm X 150mm CTAG
- Circulatory arrest time 19 minutes - 20 degrees Centigrade

Postoperative Course

- Extubated POD #0
- Transferred to floor POD #1
- Chest pain/ST elevation noted POD 3
MM Report

- Acute anterior MI occurring as a result of an ACS occurrence and not as a complication immediately related to the surgical procedure, i.e., flap dissection or embolization. A very nice result was obtained…

Postoperative Course

- Abdominal pain- elevated WBC- POD#14
 - General surgery consult
- OR- Lap sigmoidectomy, Hartman colectomy with end colostomy
- Discharged 10 days later
TS- Loeys- Dietz Syndrome (LDS)

- AD disease, discovered in 2005
- Mutations in Transforming Growth Factors Beta Receptors 1 and 2 (TGFBR 1 and 2)
- Arterial tortuosity, hypertelorism, bifid uvula
- Very high risk of aortic ruptures, dissections (earlier ages, smaller diameter)

Cardiovascular operations for Loeys-Dietz syndrome: Intermediate-term results

Nishant D. Patel, MD, Todd Crawford, MD, J. Trent Magruder, MD, Diane E. Alejo, BA, Nanotoshi Hibino, MD, James Black, MD, Harry C. Dietz, MD, Luca A. Vricella, MD, and Duke E. Cameron, MD

TS- 36 year-old Male

• PSH:
 – 2004: aortic root replacement with mechanical CVG for an acute type A dissection (age 22)
 – 2009: left vertebral artery dissection with coil embolization
 – 2011: redo upper hemi- sternotomy, RSCA aneurysm repair
 – 2012: Descending aortic stent- graft placement (?rupturing pseudoaneurysm)
 – (continued enlargement of RSCA aneurysm)
TS- 36 year-old Male

• PSH:
 – 2016: right vertebral artery ligation
 – (continued enlargement of RSCA aneurysm)
 – 2018: decision to address remaining ascending aorta, aortic arch, RSCA aneurysm, LSCA aneurysm
Operative Planning

- Single vs multi-stage procedure
- CPB, hypothermia, cannulation
- The biggest question: HOW TO ACCESS ALL LOCATIONS AT THE SAME TIME - SURGICAL APPROACH!!
Options

- Sternotomy… cannot reach to the sides
- Sternotomy + thoracotomy… maybe
- Hemi- clamshell… maybe
- Sternotomy + hemi- clamshell… maybe
- Clamshell… I THINK SO!!!

- Phone call to a friend…
- “… through a clamshell you will be able to see another OR if you need to…”
First Stage

• Left subclavian- left carotid bypass
First Stage

• Extubation
• Quick recovery
Second Stage

- 2 arterial lines
- Left axillary cannulation
- Right groin cut-down
- Inframammary incision
- 3rd intercostal space clamshell thoracosternotomy
- Mobilization
- Cannulation of the heart; cooling; heart protection
- Circulatory arrest

Second Stage - 2 Days Later

- Debranching of arch vessels
- Restoring upper body CPB
- Antegrade deployment of FET
- Ascending aortic graft to FET
- Sewing all pieces together
- Clamps off, rewarming
- Break- for us and the patient- ICU
Third Stage- 36 Hours Later

- Exploration and ligation of right subclavian aneurysm
- Partial resection of the aneurysm sac
- Oops… innominate vein is thrombosed…

- Thrombectomy of left innominate vein
- Reconstruction of the confluence of the right and left innominate vein with SVC using a bovine pericardial patch
Postoperative Course

- Extubated POD #2 - BiPAP
- TPN, naso-jejunal tube feeds
- 1 week in ICU - telemetry
- 6 days later - epistaxis - ICU, packing reintubation, IR embolization x2
- Extubation
- Discharged 1 month after surgery
Multidisciplinary Team

- CV Surgery (Cardio- Vascular- !!)
- ANESTHESIA !!!
- Cardiology- Interventional/ AHF/ General
- ICU
- General Surgery
- Neurology
- Interventional Radiology

Is Hybrid Room a Necessity

YES !!!
Patients that Benefit the Most from Complete Aortic Repairs

- Risk vs benefit
 - Young people
 - Tear in arch
 - Any evidence of malperfusion
 - Connective tissue disorder!!!!!

Cases Presented

- Low LVEF; profound heart failure, ECMO support, malperfused
- 72 year old
- Multiple redo surgeries
- Morbidly obese
- Von Willebrand Disease- 4 joints replaced
Patients that Benefit the Most from Complete Aortic Repairs

Maybe ALL OF THEM??

Summary

1. Multidisciplinary (TEAM) approach allows simultaneous treatment of primary pathology in Type A aortic dissections (proximal repair) and malperfusion complications (arch, descending aorta, revascularization of end organs)

2. Cannulation strategy, hypothermia, and addressing the arch vessels first allows uninterrupted perfusion to the brain and quick restoration of blood flow to upper body
Summary

3. Performing FET across the arch instead of distal to left subclavian artery minimizes the risk of spinal cord ischemia

4. Complete hybrid proximal aortic repair (root, ascending, arch vessels, arch, proximal descending aorta) promotes aortic healing (remodeling), decreases the risk of needing re-intervention

References

1. Frank Criado, MD, Aortic Dissection, A 250-Year Perspective, Texas Heart Institute Journal, 2011
2. Xun Yuan et al, Conservative management vs endovascular or open surgery in the spectrum of type B aortic dissection, J Visc Surg, 2018
6. A. Scott et al, Contemporary Management of Acute Type B Dissection, Eur J Vasc Endovasc Surg, 2016
7. Christoph Nienaber et al, Randomized Comparison of Strategies for Type B Aortic Dissection: The Investigation of STEnt Grafts in Aortic Dissection (INSTEAD) Trial, Circulation, 2010
8. Christoph Nienaber, Endovascular Repair of Type B Aortic Dissection: Long –term Results of the Randomized Investigation of Stent Grafts in Aortic Dissection Trial, Circulation, 2010
9. Yong-Lin Qin et al, Endovascular Repair Compared With Medical Management of Patients With Uncomplicated Type B Acute Aortic Dissection, JACC, 2016
10. Guy Martin et al, Antihypertensive medication adherence in chronic type B aortic dissection is an important consideration in the management debate, Elsevier, 2018
References

13. Michol Cooper et al, Diagnosis and treatment of uncomplicated type B aortic dissection, Vascular Medicine, 2016
Thank you!!!