Standardized Nurse-Driven Protocol for Postoperative Atrial Fibrillation Reduces Length of Stay and Hospital Costs

Chris Han BA, Craig Strauss MD MPH, Ross Garberich MS MBA, Benjamin Sun MD, Raed Abdelhadi MD, Tim Henry MD

Disclosures

• The authors have no relevant financial or nonfinancial relationship(s) within the products or services described, reviewed, evaluated, or compared in this presentation.

• There are no relevant unlabeled/unapproved use disclosures related to this presentation.
Background: Atrial Fibrillation

Atrial fibrillation

Intracardiac thrombi

Background: Postoperative Atrial Fibrillation (POAF)

Postoperative Atrial Fibrillation Rates by Surgery Type

Unadjusted 10-year Survival by Surgery Type

Lee, R. Atrial fibrillation and flutter after cardiac surgery. In: UpToDate, Post, TW (Ed), UpToDate, Waltham, MA, 2015.

Methods: MHI / Abbott Northwestern’s Nurse-Driven POAF Protocol

- In March 2013, a real-time atrial fibrillation inpatient protocol was implemented in the CV surgery postoperative care units.
- The protocol guides beta-blocker, anti-coagulant, and antiarrhythmic therapy by incorporating a real-time decision support tool for dosing and communication.

Methods: Sample Protocol Branch

- First Episode:
 - HR < 130
 - SBP < 100
 - If patient is on beta-blockers, continue beta-blockers.
 - If patient is not on beta-blockers, use atenolol or labetalol.
 - SBP > 100
 - If patient is on beta-blockers, continue beta-blockers.
 - If patient is not on beta-blockers, use atenolol or labetalol.
 - HR > 130
 - SBP < 100
 - If patient is on beta-blockers, continue beta-blockers.
 - If patient is not on beta-blockers, use atenolol or labetalol.
 - SBP > 100
 - If patient is on beta-blockers, continue beta-blockers.
 - If patient is not on beta-blockers, use atenolol or labetalol.

- No antiarrhythmic
 - No beta-blocker
 - No anticoagulant

- Communication & consult support

Care Decision

Medication Timing/Dosing support
- A) Beta Blockers for Rate Control
- B) Amiodarone for rhythm control
- C) Anticoagulants

Heart Rate
Blood Pressure
Duration of POAF
Medication status
Methods: Study Population

1660 CV Surgery Patients between March 2013 and August 2015

274 Patients excluded for unknown atrial fibrillation or protocol status
Methods: Study Population

1660 CV Surgery Patients between March 2013 and August 2015

274 Patients excluded for unknown atrial fibrillation or protocol status

1386 Qualifying CV Surgery Patients w/ known atrial fibrillation & protocol status

899 Patients without POAF
Methods: Study Population

1660 CV Surgery Patients between March 2013 and August 2015

274 Patients excluded for unknown atrial fibrillation or protocol status

1386 Qualifying CV Surgery Patients w/ known atrial fibrillation & protocol status

899 Patients without POAF

233 Patients with POAF Managed with Protocol

274 Patients with POAF Managed without Protocol
Results: Baseline Characteristics

<table>
<thead>
<tr>
<th>No POAF</th>
<th>POAF w/ Protocol</th>
<th>POAF w/o Protocol</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=899)</td>
<td>(n=233)</td>
<td>(n=254)</td>
<td></td>
</tr>
<tr>
<td>Age†</td>
<td>65 (56.72)*</td>
<td>71 (64.76)*</td>
<td>71 (65.77)*</td>
</tr>
<tr>
<td>Male</td>
<td>635 (70.6%)</td>
<td>163 (70.0%)</td>
<td>173 (68.1%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>242 (26.9%)</td>
<td>68 (28.3%)</td>
<td>76 (29.9%)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>734 (81.7%)</td>
<td>199 (85.4%)</td>
<td>212 (83.5%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>663 (73.8%)</td>
<td>172 (73.8%)</td>
<td>196 (77.2%)</td>
</tr>
<tr>
<td>On Dialysis</td>
<td>8 (0.9%)</td>
<td>0 (0.0%)</td>
<td>3 (1.2%)</td>
</tr>
<tr>
<td>PAD</td>
<td>79 (8.8%)</td>
<td>19 (8.2%)</td>
<td>21 (8.3%)</td>
</tr>
<tr>
<td>Cerebrovascular Disease</td>
<td>59 (6.6%)</td>
<td>9 (3.9%)</td>
<td>22 (8.7%)</td>
</tr>
<tr>
<td>History of Premature CAD</td>
<td>105 (11.7%)</td>
<td>34 (14.6%)</td>
<td>28 (11.0%)</td>
</tr>
<tr>
<td>Current Smoker</td>
<td>62 (6.9%)*</td>
<td>12 (5.2%)*</td>
<td>7 (2.8%)*</td>
</tr>
<tr>
<td>Chronic Lung Disease</td>
<td>137 (15.3%)</td>
<td>33 (14.2%)</td>
<td>60 (23.6%)</td>
</tr>
<tr>
<td>Obese (BMI 30+)</td>
<td>364 (40.5%)</td>
<td>99 (42.5%)</td>
<td>107 (42.1%)</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>50 (5.6%)</td>
<td>8 (3.4%)</td>
<td>16 (6.3%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedure Type</th>
<th>No POAF (n=899)</th>
<th>POAF w/ Protocol (n=233)</th>
<th>POAF w/o Protocol (n=254)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABG</td>
<td>299 (33.3%)</td>
<td>80 (34.3%)</td>
<td>65 (25.6%)</td>
<td>0.083</td>
</tr>
<tr>
<td>Aortic Valve</td>
<td>173 (19.2%)</td>
<td>56 (24.0%)</td>
<td>49 (19.3%)</td>
<td></td>
</tr>
<tr>
<td>Mitral Valve</td>
<td>100 (11.1%)</td>
<td>23 (9.9%)</td>
<td>35 (13.8%)</td>
<td></td>
</tr>
<tr>
<td>Combination/Other</td>
<td>327 (36.3%)</td>
<td>74 (31.8%)</td>
<td>105 (41.4%)</td>
<td></td>
</tr>
</tbody>
</table>

* Categories with the same superscripts do not differ. † Reported as Median (25th, 75th)
Results: Clinical Endpoints

Postoperative Stroke

- No POAF: 2.1%
- POAF with Protocol: 3.4%
- POAF without Protocol: 5.9%

p<0.01

Postoperative Stroke: 0.3% 0.4% 0.4%

P=NS (0.972)

Transient Ischemic Attack

- No POAF: 0%
- POAF with Protocol: 2%
- POAF without Protocol: 4%

Mnemosyne Heart Institute
Center for Healthcare Delivery Innovation
Results: Clinical Endpoints

Postoperative Stroke

![Bar chart showing postoperative stroke rates for POAF with and without protocol compared to no POAF.](chart)

ICU Length of Stay (Median, Hours)

![Bar chart showing ICU length of stay for POAF with and without protocol compared to no POAF.](chart)

Transient Ischemic Attack

![Bar chart showing transient ischemic attack rates for POAF with and without protocol compared to no POAF.](chart)

ICU Readmission

![Bar chart showing ICU readmission rates for POAF with and without protocol compared to no POAF.](chart)

Note: Values are significantly different at the p=0.05 level.
Results: Cost Endpoints

Inpatient Length of Stay (Median, Days)

<table>
<thead>
<tr>
<th>Protocol Status</th>
<th>Inpatient Length of Stay (Median, Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No POAF</td>
<td>6.1</td>
</tr>
<tr>
<td>POAF with Protocol</td>
<td>6.9</td>
</tr>
<tr>
<td>POAF without Protocol</td>
<td>9.0</td>
</tr>
</tbody>
</table>

p<0.01

30-Day Readmission Rate

<table>
<thead>
<tr>
<th>Protocol Status</th>
<th>30-Day Readmission Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>No POAF</td>
<td>16.6%</td>
</tr>
<tr>
<td>POAF with Protocol</td>
<td>7.4%</td>
</tr>
<tr>
<td>POAF without Protocol</td>
<td>19.2%</td>
</tr>
</tbody>
</table>

p<0.01
Results: Cost Endpoints

Inpatient Length of Stay (Median, Days)

- **No POAF**: 6.1
- **POAF with Protocol**: 6.9
- **POAF without Protocol**: 9.0

- **p<0.01**

30-Day Readmission Rate

- **No POAF**: 16.6%
- **POAF with Protocol**: 7.4%
- **POAF without Protocol**: 19.2%

- **p<0.01**

Total Variable Costs

- **No POAF**: $22,988
- **POAF with Protocol**: $23,366
- **POAF without Protocol**: $30,566

- **p<0.01**

Postoperative Consult Ordered

- **No POAF**: 14.9%
- **POAF with Protocol**: 12.5%
- **POAF without Protocol**: 18.9%

- **p<0.13**

Note: Values are significantly different at the p=0.05 level.
Conclusions

• A nurse-driven, real-time decision support protocol successfully standardized treatment of postoperative atrial fibrillation

• Clinical endpoints
 – Postoperative stroke rates were reduced by ~40% (3.4% vs. 5.9%)
 – ICU Length of Stay were shorter (24 hours vs. 53 hours)
 – ICU Readmission rates were reduced (6.0% vs. 9.8%)

• Cost endpoints
 – Length of Stay was reduced (6.9 vs. 9.0 days)
 – Total variable cost was reduced, in line with patients without POAF ($23,366K vs. $30,500)
 – Patients requiring a postoperative cardiology consult was reduced (12.5% vs. 18.9%)

Acknowledgements

• Minneapolis Heart Institute Foundation

• Allina Health System

• Dr. Craig Strauss, Pam Rush, and the Minneapolis Heart Institute Center for Healthcare Delivery Innovation Team