MHIF Cardiovascular Grand Rounds | May 19, 2025



Novel Speech and Voice Biomarkers for the Remote Detection of Cardiovascular Disease

> Cardiovascular Grand Rounds May 19 2025

Jas Sara MBChB PhD





- various diseases
- Discuss important future considerations in this area of research





### MHIF Cardiovascular Grand Rounds | May 19, 2025









| 1   | Source of Vocalization     | S – speech<br>V – vocal sounds<br>N – non-verbal sounds<br>D – all types |
|-----|----------------------------|--------------------------------------------------------------------------|
| 11  | Method of Voice Assessment | A – active recording<br>P – passive recording<br>D – both types          |
| 111 | Method of Voice Analysis   | A – acoustic<br>L – linguistic<br>D – both types                         |
| IV  | Location of Recording      | I – in-person<br>R – remote                                              |







Examples Individuals asked to perform 3 separate 30second voice recordings: Spontaneous conversational speech? • i) reading a prespecified text • ii) describing a positive emotional experience Reading scripted text? • iii) describing a negative emotional experience Selective approach: • Linguistic • Acoustic Parkinson's Alzheimer's Pneumonia Depression Disease Disease





| Alzheimer's Disease     |                                       |                                                   | NORMAL<br>Sulcus<br>Gyrus<br>Language<br>Memory | ALZHEIMER'S<br>Sulcus<br>Gyrus<br>tricle<br>Language<br>Memory                                      |
|-------------------------|---------------------------------------|---------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Ref.                    | Sample                                | Voice bio                                         | marker used                                     | Principal findings                                                                                  |
| Ahmed<br>et al.<br>2013 | 15 subjects                           | Speech Act<br>Person (SAI                         | ive Linguistic In-<br>LI) biomarker             | Subtle changes in language evident in prodromal stages of Alzheimer's disease                       |
| Toth et<br>al. 2018     | 48 with MCI<br>38 healthy<br>controls | <b>S</b> peech <b>A</b> ct<br>Person ( <b>SAI</b> | ive Linguistic In-<br>LI) biomarker             | Significant differences in most features evaluated<br>Discrimination of groups with F1 score of 79% |



|                          | Psychiatric Diseases               |                                                                        |             |               |                  |                       |                                   |              |  |  |
|--------------------------|------------------------------------|------------------------------------------------------------------------|-------------|---------------|------------------|-----------------------|-----------------------------------|--------------|--|--|
| Post Ti                  | raumatic S                         | tress Disorder                                                         | Intrusive   |               | Avoidance        | Heightened<br>arousal | Changes in<br>thoughts & feelings |              |  |  |
| Ref.                     | Sample                             | Voice biomarker use                                                    | ed          | Prin          | cipal findi      | ngs                   |                                   |              |  |  |
| Marmar<br>et al.<br>2019 | 52 cases of<br>PTSD<br>77 controls | Speech Active Dual (ac<br>and linguistic) In-perso<br>(SADI) biomarker | oustic<br>n | 18 sr<br>95.4 | oeech featu<br>% | ıres collecti         | vely provid                       | ed an AUC of |  |  |

| Ref.                              | Sample                                 | Outcome                                         | Voice biomarker used                                 | Principal findings                                                 |
|-----------------------------------|----------------------------------------|-------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|
| Belouali<br>et al 2021            | 588 audio<br>recordings                | Suicidal<br>ideation                            | Speech Active Dual In-<br>person (SADI) biomarker    | Classified suicidal ideation with 86% sensitivity, 70% specificity |
| Zhang et<br>al 2020               | 535 audio<br>recordings                | Depression<br>severity<br>(using PHQ-<br>9)     | Speech Active Dual<br>Remote (SADR)<br>biomarker     | Voice features predicted PHQ-9 scores with an AUC of 82.1%         |
| Mundt et<br>al 2012               | 105 adults<br>with major<br>depression | Depression<br>severity<br>Treatment<br>response | Speech Active Acoustic<br>Remote (SAAR)<br>biomarker | Significant differences in speech patterns in responders           |
| Faurholt-<br>Jepsen et<br>al 2016 | 28 adults<br>with bipolar<br>disorder  | Bipolar<br>disorder                             | Speech Active Dual<br>Remote (SADR)<br>biomarker     | Voice features classified manic or mixed states with an AUC of 89% |



| Ref.               | Sample         | Age, yrs | Male<br>(%) | Voice biomarker<br>used             | Cardiovascular<br>outcome    | Principal   | findings |            |      |
|--------------------|----------------|----------|-------------|-------------------------------------|------------------------------|-------------|----------|------------|------|
| Maor et<br>al 2018 | 101<br>planned | Median   | 54          | 81 different pre-                   | Coronary<br>artery disease   | Recording   | OR       | 95% CI     | P    |
|                    | coronary       | 01       |             | features from (<br>each recording a | (CAD) at                     | Recording 1 |          |            |      |
|                    | angiograms     |          |             |                                     | angiography                  | Feature 43  | 1.97     | 0.81-4.80  | .14  |
|                    | 37 controls    |          |             |                                     | peech Active<br>Acoustic In- | Feature 71  | 0.63     | 0.32-1.22  | .17  |
|                    |                |          |             | Acoustic In-                        |                              | Recording 2 |          |            |      |
|                    |                |          |             | person ( <b>SAAI</b> )<br>biomarker |                              | Feature 43  | 2.79     | 0.90-8.62  | .08  |
|                    |                |          |             | biomarker                           | Unidiker                     | Feature 71  | 0.37     | 0.18-0.79  | .009 |
|                    |                |          |             |                                     |                              | Recording 3 |          |            |      |
|                    |                |          |             |                                     |                              | Feature 43  | 4.01     | 1.25-12.84 | .02  |
|                    |                |          |             |                                     |                              | Feature 71  | 0.49     | 0.25-0.96  | .04  |

| Ref.               | Sample                                   | Age, yrs     | Male<br>(%) | Voice biomarker<br>used                                                                                                        | Follow-up                                     | Cardiovascular outcome                                                                                                                                                                                                                                                                                        |
|--------------------|------------------------------------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sara et<br>al 2022 | 108<br>planned<br>coronary<br>angiograms | Mean<br>59.5 | 55          | 223 acoustic<br>features extracted<br>to develop a voice<br>biomarker<br>Speech Passive<br>Acoustic Remote<br>(SPAR) biomarker | Median<br>24 months<br>Range<br>1 – 60 months | <ul> <li>Primary composite outcome:</li> <li>presenting to the ED with chest pain</li> <li>admission to hospital due to chest pain</li> <li>diagnosis of ACS</li> </ul> Secondary composite outcome: <ul> <li>incidence of a positive stress test</li> <li>presence of CAD on coronary angiography</li> </ul> |



| Asso                           | Association Between Voice Biomarker and Composite Outcomes |                                                                                                    |                       |  |  |  |  |  |  |
|--------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|
|                                |                                                            | Hazards Ratio (95% CI) for the Association<br>with High Mean Voice Biomarker<br>(T3 vs. T1 and T2) | P value               |  |  |  |  |  |  |
| Primary Composite<br>Outcome   | Univariable<br>Multivariable†                              | 2.29 (1.26 – 4.17)<br>2.61 (1.42 – 4.80)                                                           | 0.007*<br>0.002*      |  |  |  |  |  |  |
| Secondary Composite<br>Outcome | Univariable<br>Multivariable†                              | 2.44 (0.89 – 6.74)<br>3.13 (1.13 – 8.68)                                                           | 0.080<br>0.030*       |  |  |  |  |  |  |
|                                |                                                            | †adjusted for CAD grade a                                                                          | at baseline angiogram |  |  |  |  |  |  |







## MHIF Cardiovascular Grand Rounds | May 19, 2025

| Ref.               | Sample                                                      | Age,<br>yrs  | Male<br>(%) | Voice biomarker<br>used                      | Cardiovascula<br>r outcome                               | Principal fi                                                                                                  | ndings            |                                                                                                                           |                   |
|--------------------|-------------------------------------------------------------|--------------|-------------|----------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------|
| Sara et al<br>2020 | 83 patients<br>undergoing<br>right heart<br>catheterization | Mean<br>61.6 | 45          | Same biomarker<br>developed for<br>CAD study | Primary<br>outcome:<br>pulmonary<br>hypertension<br>(PH) | 1.0<br>Biomarker<br>value<br>0.6<br>0.4<br>0.2<br>0.0<br>mPAP (mmHg)<br>MULTIVARIATE<br>ANALYSES<br>Pulmonary | P=1<br>0.74<br>PH | 0.046<br>0.43<br>0.43<br>No PH<br>0dds Ratio (95%<br>C1) for<br>Association with<br>Voice Biomarker<br>1.92 (1.00 – 3.65) | P value<br>0.049* |
|                    |                                                             |              |             |                                              |                                                          | Hypertension                                                                                                  | PCWP ≥ 15mmHg     | 1.89 (0.87 – 4.12)                                                                                                        | 0.008*            |
|                    |                                                             |              |             |                                              |                                                          |                                                                                                               | PCWP < 15mmHg     | 2.09 (0.64 – 6.82)                                                                                                        | 0.223             |

| Ref.               | Sample                                                    | Age, yrs     | Male<br>(%) | Follow-<br>up          | Voice<br>biomarker used                         | Cardiovascular<br>outcome                                                                                       | Principal findings                                                                                                                                                  |
|--------------------|-----------------------------------------------------------|--------------|-------------|------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maor et al<br>2020 | 2,267<br>patients<br>with<br>clinical<br>heart<br>failure | Median<br>77 | 63          | Median<br>20<br>months | Same<br>biomarker<br>developed for<br>CAD study | Primary<br>outcome: all-<br>cause mortality<br>Secondary<br>outcome:<br>hospitalization<br>during follow-<br>up | Cumulative survival probability<br>Mortality Q4 vs. Q1:<br>OR 1.96<br>95% CI: 1.59-2.42<br>P<0.001<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

| Reference                                                         | Sample<br>Size | Population                                               | Recording Method                                                                | Analytical Technique                                                                                                                                       | Results                                                                                                                           |
|-------------------------------------------------------------------|----------------|----------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Murton et<br>al. JASA<br>2017                                     | 10             | Acute HF<br>undergoing<br>diuresis                       | Daily recordings<br>during admission<br>- Sustained vowels<br>- Speech passages | <ul> <li>Acoustic analysis</li> <li>Measures of vocal perturbations</li> </ul>                                                                             | <ul><li>After treatment</li><li>Changes in creaky voice</li><li>Increased fundamental frequency</li></ul>                         |
| Kiran Reddy<br>et al.<br>Computer<br>Speech &<br>Language<br>2021 | 45             | 25 healthy<br>speakers<br>20patients<br>with acute<br>HF | Single recording<br>- Text-reading task x<br>3 and spontaneous<br>speech x 1    | <ul> <li>Machine Learning</li> <li>Glottal features (9 time-domain and 3 frequency-domain)</li> <li>Mel frequency cepstral coefficients (MFCCs)</li> </ul> | <ul> <li>Glottal features classified<br/>HF accurately</li> <li>MFCCs were more<br/>accurate than glottal<br/>features</li> </ul> |
| Murton et<br>al. Appl Sci<br>(Basel)<br>2023                      | 52             | Acute HF<br>undergoing<br>diuresis                       | Daily recordings<br>during admission<br>- Speech passages                       | <ul> <li>Machine Learning</li> <li>Several acoustic features</li> </ul>                                                                                    | After treatment, speakers<br>exhibited:<br>- Faster speech rates<br>- Longer phrases<br>- More stable phonation                   |

# Specific Aims

- i) Association between <u>acoustic features</u> derived from speech <u>using</u> <u>acoustic analysis</u> and CHRONIC STABLE HF and PH separately and in combination
  - ii) To train and test <u>deep learning models</u> derived from speech analysis to discriminate CHRONIC STABLE HF and PH separately and in combination







One morning, Dorothy crossed the hall of the palace and knocked on the door of another girl named Trot. When told to enter, Dorothy found that Trot had company, an old sailor man with a wooden leg who was sitting by the open window puffing smoke from a pipe. The sailor man was named Captain Bill, and he had accompanied Trot to the land of Oz and was her oldest and most faithful comrade. Dorothy liked Captain Bill, and after she had greeted him, she said to Trot, "You know it's Ozma's Birthday next month, and I've been wondering what I can give her as a birthday present. She's so good to us all that we certainly ought to remember her birthday."

The Magic of Oz / Chapter 5 by Frank Baum (1919)























|                  | Pulmonary HTN –<br>Heart Failure – | Pulmonary HTN +<br>Heart Failure – | Pulmonary HTN –<br>Heart Failure + | Pulmonary HTN +<br>Heart Failure + | p-value  |
|------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------|
|                  | (n = 1052)                         | (n = 222)                          | (n = 559)                          | (n = 320)                          |          |
| Age (years)      | 60.5 (14.6)                        | 67.9 (13.4)                        | 69.2 (12.8)                        | 71.6 (14.5)                        | <0.0001* |
| Female Sex %     | 455 (43.3)                         | 118 (53.2)                         | 189 (33.8)                         | 145 (45.3)                         | <0.0001* |
| Ethnicity %      |                                    |                                    |                                    |                                    |          |
| White            | 1009 (95.9)                        | 216 (97.3)                         | 539 (96.4)                         | 307 (95.9)                         |          |
| Asian            | 12 (1.1)                           | 1 (0.5)                            | 4 (0.7)                            | 1 (0.3)                            |          |
| African American | 12 (1.1)                           | 1 (0.5)                            | 5 (0.9)                            | 6 (1.9)                            | 0.9460   |
| Other            | 6 (0.6)                            | 2 (0.9)                            | 4 (0.7)                            | 2 (0.6)                            |          |

|                     | Pulmonary HTN –<br>Heart Failure –<br>(n = 1052) | Pulmonary HTN +<br>Heart Failure –<br>(n = 222) | Pulmonary HTN –<br>Heart Failure +<br>(n = 559) | Pulmonary HTN +<br>Heart Failure +<br>(n = 320) | p-value  |
|---------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------|
| Diabetes mellitus % | 151 (14.4)                                       | 52 (23.4)                                       | 149 (26.7)                                      | 80 (25)                                         | <0.0001* |
| Hypertension %      | 619 (58.8)                                       | 179 (80.6)                                      | 452 (80.9)                                      | 266 (83.1)                                      | <0.0001* |
| Hyperlipidemia %    | 610 (58)                                         | 151 (68)                                        | 442 (79.1)                                      | 238 (74.4)                                      | <0.0001* |
| History of CAD %    | 336 (31.9)                                       | 92 (41.4)                                       | 342 (61.2)                                      | 177 (55.3)                                      | <0.0001* |
| History of Stroke % | 66 (6.3)                                         | 24 (10.8)                                       | 79 (14.1)                                       | 41 (12.8)                                       | <0.0001* |



|                                 | Univariable Linear Model |              |          | Multivariable Linear Model |              |          |
|---------------------------------|--------------------------|--------------|----------|----------------------------|--------------|----------|
|                                 | Estimated Coefficient    | 95% CI       | p-value  | Estimated Coefficient      | 95% CI       | p-value  |
| CPP VOICED SPEECH               |                          |              |          |                            |              |          |
| PH+ HF- vs. No disease          | 0.35                     | 0.14, 0.56   | 0.0011*  | 0.37                       | 0.16, 0.57   | 0.0004*  |
| PH- HF+ vs. No disease          | -0.12                    | -0.27, 0.03  | 0.1079   | 0.06                       | -0.08, 0.21  | 0.4054   |
| PH+ HF+ vs. No disease          | 0.01                     | -0.17, 0.19  | 0.8802   | 0.14                       | -0.04, 0.32  | 0.1233   |
| CPP ALL SPEECH                  |                          |              |          |                            |              |          |
| PH+ HF- vs. No disease          | 0.25                     | 0.09, 0.4    | 0.0020*  | 0.23                       | 0.08, 0.38   | 0.0025*  |
| PH- HF+ vs. No disease          | -0.04                    | -0.15, 0.07  | 0.4994   | 0.08                       | -0.03, 0.19  | 0.1498   |
| PH+ HF+ vs. No disease          | 0                        | -0.14, 0.13  | 0.9433   | 0.06                       | -0.08, 0.19  | 0.4081   |
| SPEECH RATE (syllables/seconds) |                          |              |          |                            |              |          |
| PH+ HF- vs. No disease          | -0.14                    | -0.22, -0.06 | 0.0006*  | -0.14                      | -0.21, -0.06 | 0.0006*  |
| PH- HF+ vs. No disease          | -0.18                    | -0.23, -0.12 | <0.0001* | -0.11                      | -0.17, -0.05 | 0.0002*  |
| PH+ HF+ vs. No disease          | -0.21                    | -0.28, -0.14 | <0.0001* | -0.17                      | -0.24, -0.1  | <0.0001* |
| Sara JDS, ESC Heart Failure     |                          |              |          |                            |              |          |



















#### Slide 58

- **JB0** This should be plural (multiple samples and surveys) Boe, Jennifer L, 2025-04-22T16:05:58.770
- JB1 I would also recommend using the summary already approved in the ICF. A good number of participants may not be eligible for part 2 and of those - only half will get to use the device, so it is important that is clear. Boe, Jennifer L, 2025-04-22T16:07:10.954
- JB2 I'd also refrain from using this as a reason to join since most participants will not receive a device. Boe, Jennifer L, 2025-04-22T16:07:39.349

## MHIF Cardiovascular Grand Rounds | May 19, 2025

