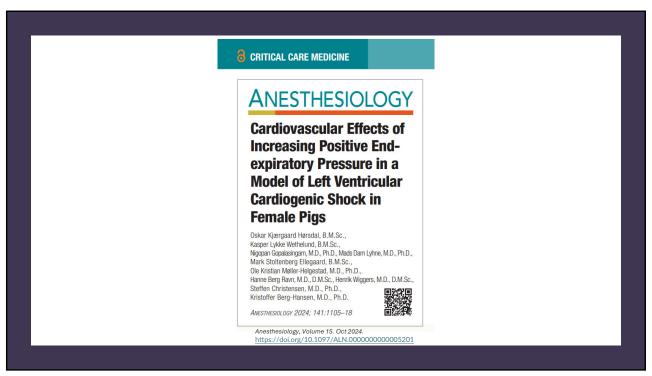
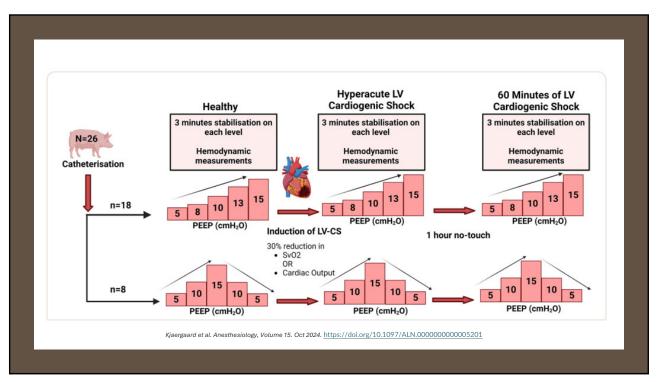
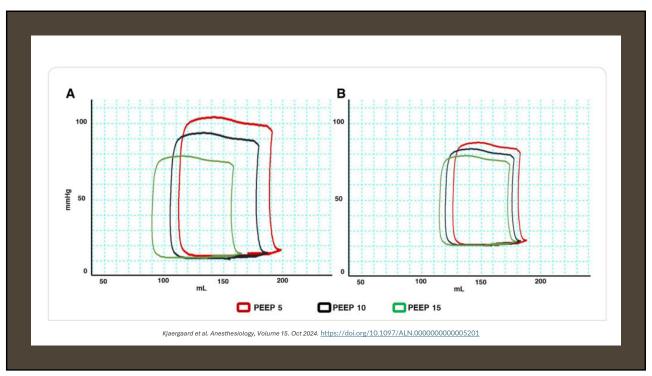
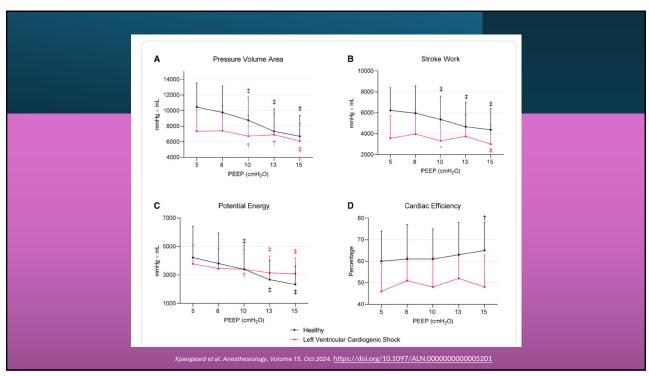
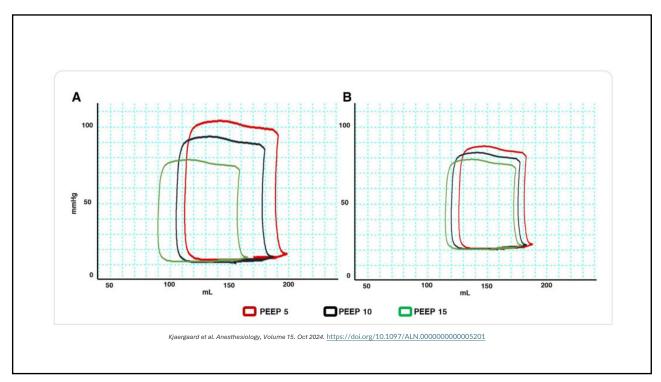

Our \	V-A EC	MO E	креі	rienc	е
735 conse	cutive V-A ECM	O runs Januar	y 2011 –	April 202	4
Patient characteristic	Died before decannulation (n=224)	Died after decannulation (n=125)	P value	Survived (n=386)	P value
Age	57	63	<0.001	54	<0.001
Hours on VA- ECMO	72.9	100.5	<0.001	91.4	<0.001
ECMO Indication					
ECPR (%)	36.1	25.6	0.059	22.2	0.508
Cannula Configuration (%)					
Femoral-femoral	79.5	71.4	0.114	79.6	0.074
North-south	2.6	0	0.167	0	
Central	17.9	28.6	0.029	20.4	0.074
Post-Cardiotomy (%)	27.0	40.7	0.012	41.3	0.989
Impella	52.4	37.9	0.013	48.9	0.041

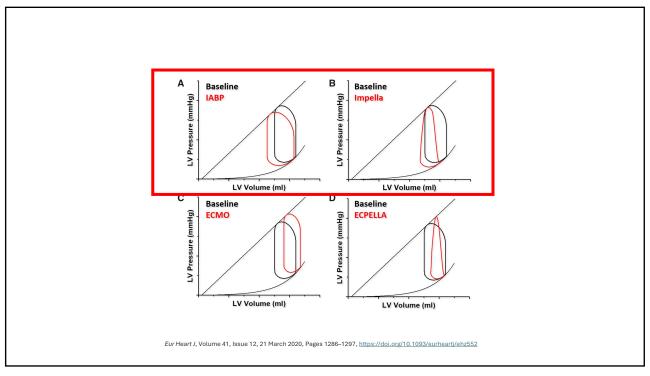











Table 1. Cardiac Energ	etic Parameters during Dif	ferent PEEP Settings			
Parameter	5 cm H ₂ O	8 cm H ₂ 0	10 cm H ₂ 0	13 cm H ₂ 0	15 cm H ₂ 0
PVA, mmHg × ml					
Healthy	10.437 ± 3.091	$9,749 \pm 3,395$	$8,755 \pm 2,999 \pm$	$7,325 \pm 2,882 \pm$	$6,699 \pm 2,660 \pm$
LV-CS	$7,350 \pm 2,798$	$7,406 \pm 3,249$	6,714 ± 2,630 †	$6,889 \pm 2,784 \dagger$	$6,083 \pm 2,233 \pm$
MPE, mmHg × I/min					
Healthy	665 ± 221	607 ± 227	$544 \pm 182 \pm$	$458 \pm 180 \pm$	414 ± 160 ‡
LV-CS	490 + 180	462 + 191	452 + 161*	448 + 182*	436 + 160 t
SW, mmHg × ml					
Healthy	$6,223 \pm 2,167$	$5,954 \pm 2,621$	$5,365 \pm 2,230 \ddagger$	$4,662 \pm 2,313 \pm$	$4,370 \pm 2,005 \pm$
LV-CS	$3,572 \pm 2,184$	$3,965 \pm 2,322$	$3,311 \pm 1,964*$	$3,753 \pm 2,065$	$2,994 \pm 1,791 \ddagger$
PE, mmHg × ml					
Healthy	$4,214 \pm 2,210$	$3,795 \pm 2,154$	$3,391 \pm 1,707 \pm$	$2,663 \pm 1,360 \pm$	$2,329 \pm 1,303 \pm$
LV-CS	$3,778 \pm 1,316$	$3,442 \pm 1,432$	$3,403 \pm 1,364 \dagger$	$3,135 \pm 1,194 \pm$	$3,089 \pm 1,104 \pm$
CE, %					
Healthy	60 ± 14	61 ± 16	61 ± 14	63 ± 15	$65 \pm 13 †$
LV-CS	46 ± 13	51 ± 11	48 ± 14	52 ± 11	48 ± 15

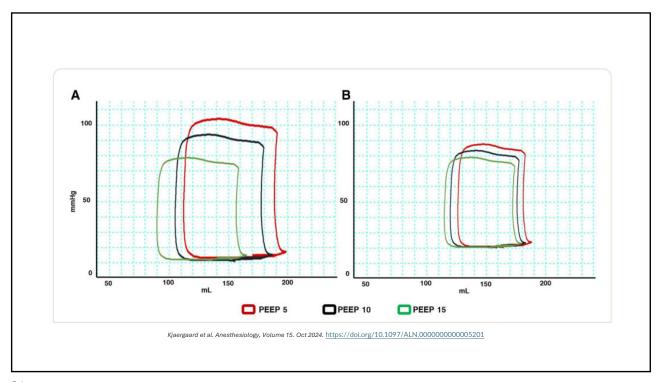
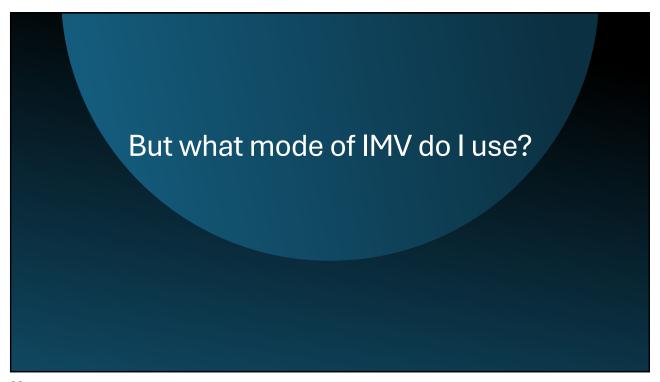
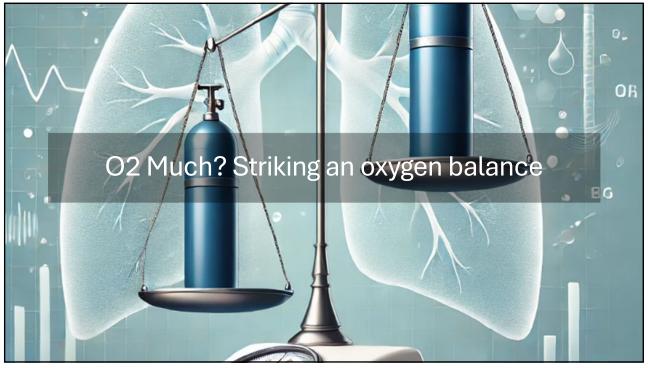

	PEEP							
Parameter	5 cm H ₂ O	8 cm H ₂ O	10 cm H ₂ 0	13 cm H ₂ 0	15 cm H ₂ 0			
SV, ml Healthy	69±24	67 ± 26	66±23	63±22	64±21*			
LV-CS	51 ± 30	57±32	50 ± 27	57 ± 27	48 ± 24*			
HK, MIN ⁻¹ Healthy	64 ± 14	63±12	63±13	63±11	63±12			
LV-CS	71 ± 25	65±17	71 ± 24	67±18	75 ± 24*			
Ees, mmHg/ml				0				
Healthy	1.39 ± 0.41	1.50 ± 0.44	1.40 ± 0.41	$1.62 \pm 0.61 \dagger$	1.50 ± 0.47			
LV-CS	1.00 ± 0.26	1.05 ± 0.27	1.03 ± 0.31	1.05 ± 0.26	1.02 ± 0.26			
dP/dt _{max} , mmHg/s								
Healthy	$1,729 \pm 354$	$1,698 \pm 371$	$1,551 \pm 338 \dagger$	$1,464 \pm 463 \ddagger$	$1,297 \pm 416 \ddagger$			
IV-CS	1 147 + 201	1 147 + 233	1 089 + 227*	1 128 + 238*	1 030 + 221†			
LVEF, %								
Healthy	49 ± 15	51 ± 17	51 ± 14	$54 \pm 17 †$	$55 \pm 13 \pm$			
LV-CS	36 ± 13	41 ± 11	38 ± 13	42±11	38 ± 14			

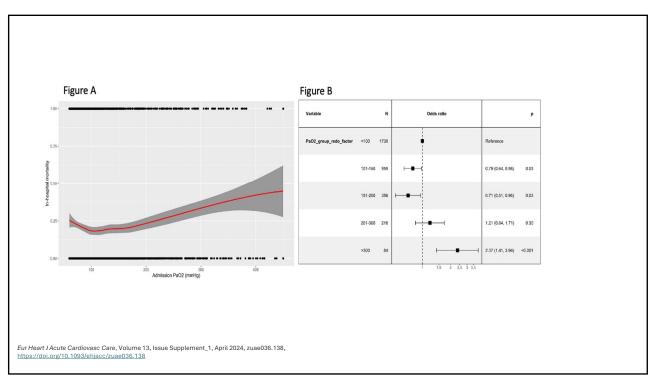
Table 2. Ellects of Differen	t PEEP Settings on Hemo	dynamic Pressure-Vo	lume Parameters		
			PEEP		
Parameter	5 cm H ₂ O	8 cm H ₂ O	10 cm H ₂ 0	13 cm H ₂ 0	15 cm H₂0
Afterload parameters					
Ea, mmHg/ml Healthy LV-CS	1.72±0.89 2.09+1.10	1.67 ± 0.92 1.75 ± 1.04	1.53 ± 0.77 1.89 ± 1.01	1.52 ± 0.88* 1.65 ± 0.99	1.32±0.69‡
LVESP, mmHg					
Healthy	102 ± 21	99 ± 20	92 ± 19‡	86 ± 21‡	78 ± 18‡
LV-CS	84±15	82±19	81 ± 18*	80 ± 19†	77 ± 17‡
P _{max} , mmHg Healthy	104 ± 21	104±19	95 ± 17‡	90 ± 20‡	83 ± 18‡
LV-CS	87 ± 16	87±18	84 ± 18*	84 ± 18*	79±16‡
LV wall stress, mmHg					
Healthy	191 ± 94	179 ± 93	$160 \pm 73 \ddagger$	$137 \pm 67 \ddagger$	$118 \pm 55 \ddagger$
LV-CS	170±63	161 ± 71	154 ± 64†	147 ± 64†	$142 \pm 50 \ddagger$
LVESV, MI	100 - 00	100 - 00	00 - 00±	00 - 04+	05 - 04±
Healthy LV-CS	108±36 119±31	103±39 114±32	99±33‡ 112±33†	89 ± 34‡ 107 ± 30†	85 ± 31‡ 108 ± 28‡
Preload parameters LVEDV, ml	119±31	114±32	112±33	107 ± 30	100±20‡
Healthy	178±36	174 ± 36	$169 \pm 35 \ddagger$	$157 \pm 36 \ddagger$	153 ± 35‡
LV-CS LVEDP, mmHg	172±39	175 ± 44	165 ± 40*	167 ± 38*	159 ± 32‡
Healthy	15±7	17±7	15±7	17±7	15±7
LV-CS	21 ± 10	21±9	20±8	21 ± 8	19±8†

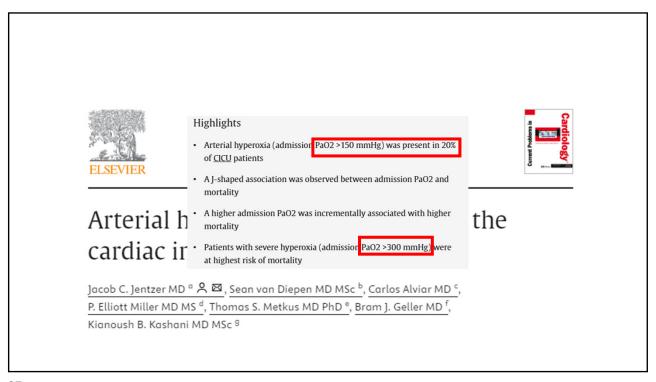


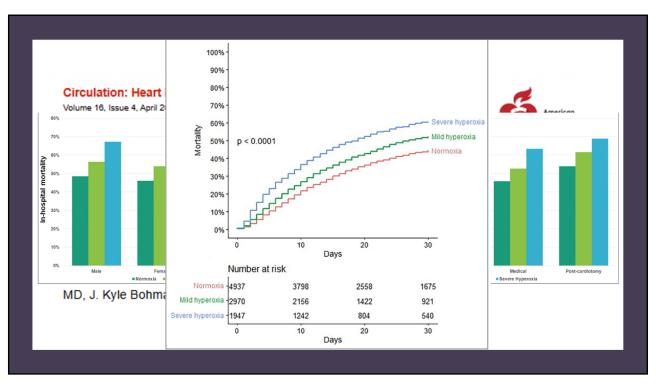


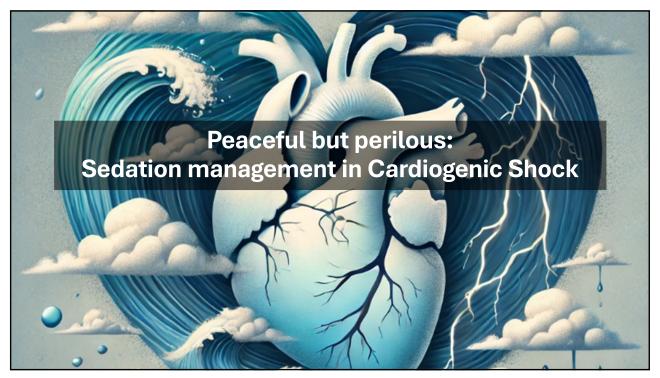
Resuscitation

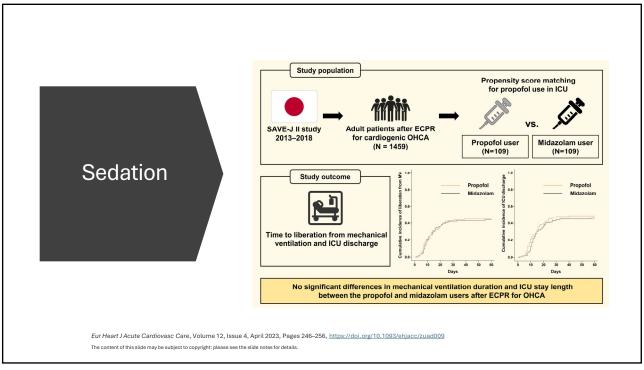
Volume 127, June 2018, Pages 83-88



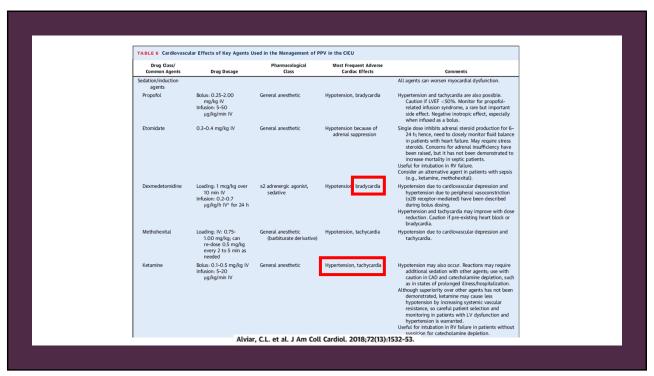

Review


Association between intra- and post-arrest hyperoxia on mortality in adults with cardiac arrest: A systematic review and meta-analysis

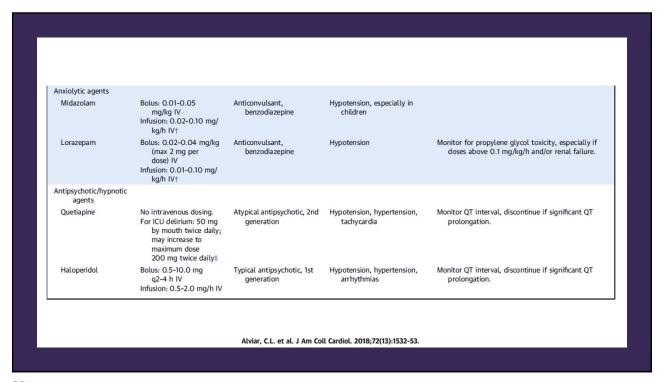

]ignesh K. Patel ° 📯 , Abdo Kataya °, Puja B. Parikh b

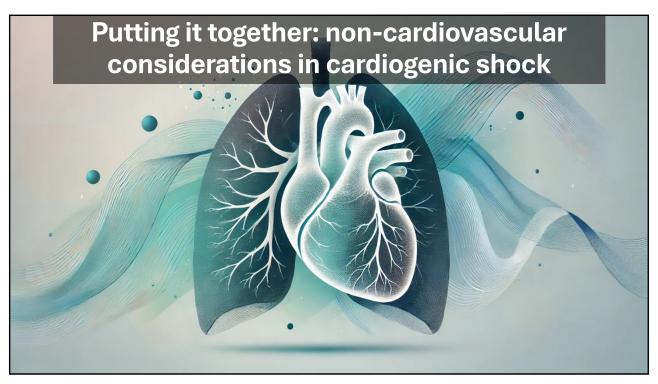

25

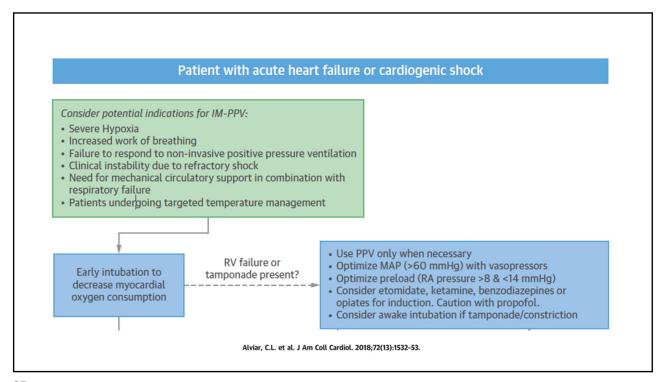
Induction Agent

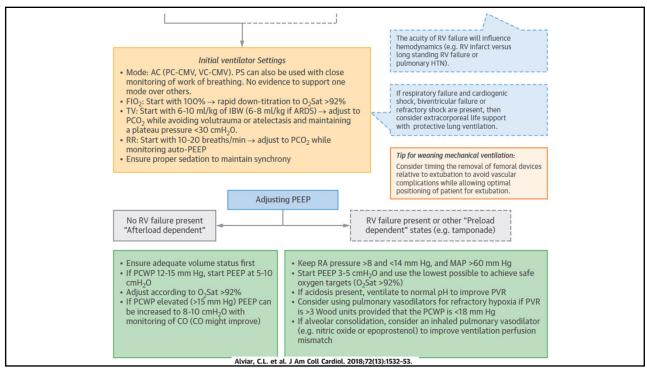

American Heart Journal Volume 272, June 2024, Pages 116-125

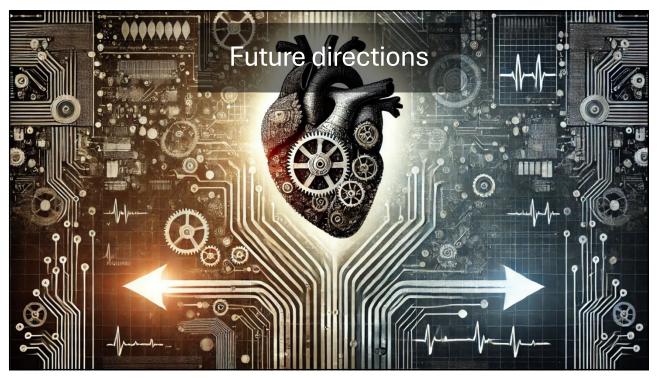
Clinical Investigations

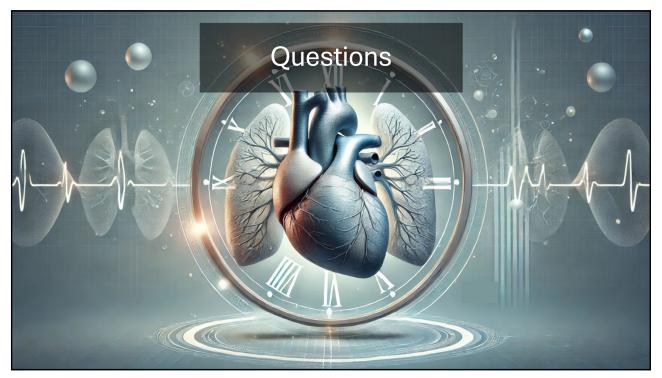

Propofol vs etomidate for induction prior to invasive mechanical ventilation in patients with acute myocardial infarction

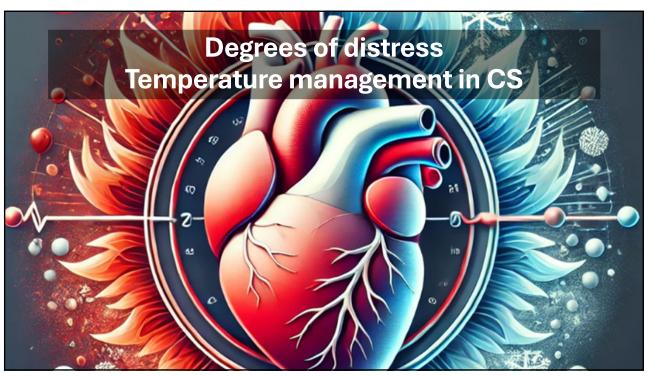

Alexander Thomas MD °, Soumya Banna MD b, Andi Shahu MD, MHS °, Tariq Ali MD, MBA °, Christopher Schenck MD °, Bhoumesh Patel MD d, Andrew Notarianni MD d, Melinda Phommalinh PA °, Ajar Kochar MD, MHS f, Cory Heck PhD, BCCP °, Sean van Diepen MD, MSC g, P. Elliott Miller MD, MHS ° &

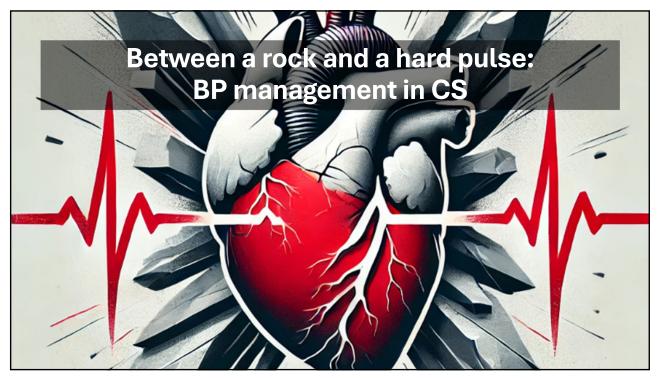



Neuromuscular blockade agents				Ensure adequate sedation and analgesia if using NMB; monitor NMB through stimulation of peripheral nerves (79).
Succinylcholine	Bolus: 1-2 mg/kg IV	Depolarizing neuromuscular blockade	Bradycardia (most often in children); hypotension, hypertension, tachycardia; Arrhythmias because of hyperkalemia	Avoid if severe electrolyte abnormalities including hyperkalemia, muscle disorders, plasma pseudo cholinesterase disorders.
Rocuronium	Bolus: 0.6-1.2 mg/kg IV Infusion: 4-16 µg/kg/min IV	Nondepolarizing neuromuscular blockade	Infrequent side effects (<1%); Anaphylaxis, hypersensitivity reactions; Hypertension, tachycardia	Use with caution in conditions that potentiate or antagonize NMB. Maintenance bolus dosing used in operating room.
Vecuronium	Bolus: 0.08-0.10 mg/kg IV Infusion: 1 μg/kg/min IV	Nondepolarizing neuromuscular blockade	Infrequent side effects (<1%); Hypersensitivity, bradycardia, hypotension; Cross-reactivity with other NMBs	Use with caution in conditions that potentiate or antagonize NMB. Maintenance bolus dosing used in operating room.
Cisatracurium	Bolus: 0.15-0.20 mg/kg IV Infusion: 0.5-10.0 μg/kg/min IV	Nondepolarizing neuromuscular blockade	Infrequent side effects (<1%); Hypersensitivity, bradycardia, hypotension; Cross-reactivity with other NMB	Use with caution in conditions that potentiate or antagonize NMB. Maintenance bolus dosing used in operating room. May be preferred in ARDS.


Reversal agents				
Sugammadex	Bolus: 2-16 mg/kg IV depending on level of block	Selective relaxant binding agent	Anaphylaxis is major side effect, nypotension, nypertension, bradycardia, tachycardia, QT prolongation	Reverses neuromuscular blockade only for rocuronium and vecuronium, not nonsteroidal neuromuscular blocking agents such as succinylcholine or benzylisoquinolinium compounds.
Naloxone	0.4-2.0 mg IV, can be repeated at 2-3 min intervals to maximum dose 10 mg	Opioid antagonist	Flushing, hypertension, hypotension, arrhythmias	For reversal in chronic use cases, reduce dose and/or dilute in 10 ml 0.9% NaCl. Infuse slowly, to avoid acute opioid withdrawal and catecholamine release that can be very concerning in cardiac patients.
Analgesics				
Fentanyl	Bolus: 25-75 µg q1-2 h IV Infusion: 50-100 mcg/h IV	Anilidopiperidine opioid; general anesthetic	Hypotension, bradycardia	Many other reported adverse reactions. Fentanyl- induced chest wall rigidity (rare complication). Other dose ranges depend on diagnosis and route of administration.
Hydromorphone	Bolus: 0.2-0.6 mg q1-2 h IV Infusion: 0.5-3.0 mg/h IV	Opioid	Hypotension, bradycardia Hypertension, tachycardia	Dose varies depending on route of delivery.
Morphine	Bolus: 2-5 mg q4 h IV for pain Infusion: 2-30 mg/h IV	Opioid	Bradycardia, tachycardia, hypotension; histamine release	Dose varies depending on route of delivery. Has a venodilatory effect so it should be used with caution in preload-dependent states (e.g., RV failure).
Methadone	2.5-10.0 mg q8-12 h IV or 10-40 mg q6-12 h by mouth	Opioid	Hypotension, arrhythmias, QT prolongation	Monitor QT interval; discontinue if significant QT prolongation. Dose varies depending on route of delivery and patient. Half-life variable and very long.
Ketorolac	Bolus: 30 mg IV, then 15-30 mg q6 h up to 5 days	NSAID	Edema, hypertension, hyperkalemia	Adjust dose for weight <50 kg, age ≥65 yrs and renal impairment. Contraindicated in setting of coronary artery bypass surgery.



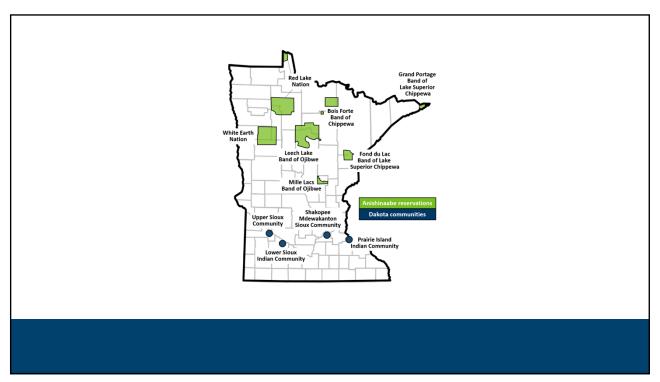




American Indian Cardiovascular Health: Minnesota Focus

Krishna Prabhu, MD, MSc General Cardiology Fellow Minneapolis Heart Institute at Abbott Northwestern Hospital Hennepin County Medical Center Minneapolis, MN 12/2/24

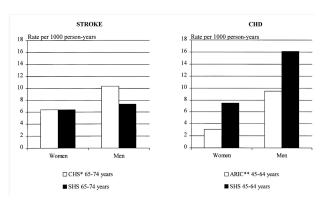
Objectives


- Geography of Minnesota's American Indian Reservations
- Disparities in burden of cardiovascular disease among American Indians
- Challenges in prevention and treatment of cardiovascular disease
- Opportunities and assets for care delivery

"Red Lake Reservation is mostly water. It is a beautiful place, unlike any other in America. For starters, Upper and Lower Red Lake are almost completely undeveloped. Elm, ash, and maple march down to the water's edge.

- David Treuer, Rez Life

CARDIOVASCULAR DISEASE BURDEN DISPARITIES


Cardiovascular disease burden of American Indians

- 1970-1980s notion from available data that American Indians had *lower* rates of cardiovascular disease than other Americans
- All from retrospective data from the Indian Health Service
- Born out of a lack of empirical data was the Strong Heart Study
 - Prospective cohort study 4549 patients from Arizona, Southwestern Oklahoma, North Dakota, South Dakota
 - Baseline exam with EKG, labs (lipids, A1c, albuminuria, obesity measures)
 - Surveilled patients over time to detect new diagnoses

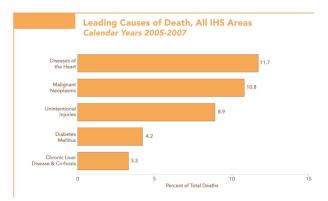
Howard BV, Lee ET, Cowan LD, et al. Rising tide of cardiovascular disease in American Indians: the Strong Heart Study. *Circulation*. 1999;99(18):2389-2395.

51

Strong Heart Study

- Strong Heart found men and women had rates of coronary artery disease that were twice that of comparable US general population cohorts
- Risk factors for coronary artery disease include: diabetes, HTN, HLD, macroalbuminuria

Howard BV, Lee ET, Cowan LD, et al. Rising tide of cardiovascular disease in American Indians: the Strong Heart Study. *Circulation*. 1999;99(18):2389-2395.

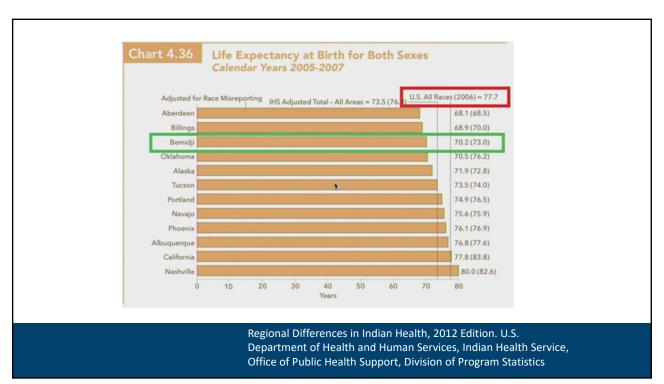

Cardiovascular disease burden of American Indians

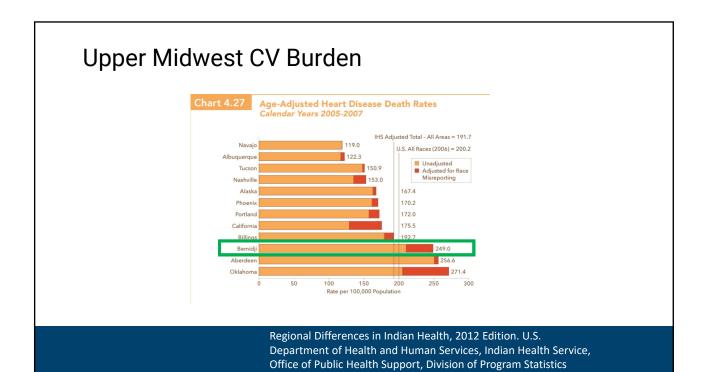
- Retrospective analysis of Medicare data for self identified American Indian patients between 2015-2019
 - Burden of heart failure 22% amongst Medicare cohort of American Indians vs 14% in comparable cohorts
 - Burden of CAD 37% amongst Medicare cohort of American Indians, vs 27% in comparable cohorts

Eberly LA, et al. Cardiovascular Disease Burden and Outcomes Among American Indian and Alaska Native Medicare Beneficiaries. JAMA Netw Open. 2023 Sep 5;6(9):e2334923.

53

Cardiovascular disease burden of American Indians




Regional Differences in Indian Health, 2012 Edition. U.S. Department of Health and Human Services, Indian Health Service, Office of Public Health Support, Division of Program Statistics

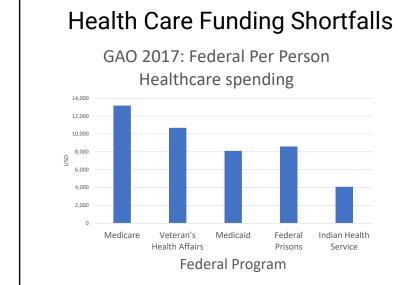
Cardiovascular disease burden of American Indians

Source: https://www.ihs.gov/careeropps/where-wework/

Upper Midwest Comorbidities Age-Adjusted Diabetes Mellitus Death Rates Calendar Years 2005-2007 Bemidji Area was found to have higher age adjusted rates of death related to diabetes U.S. All Races (2006) = 23.3 compared 16.3 Alaska IHS Adjusted Total - All Areas = 65.6 1) US population as whole Unadjusted 52.2 Adjusted for Race Misreporting 2) Other IHS areas Nashville 53.1 Oklahoma Tucsor Rate per 100,000 Population Regional Differences in Indian Health, 2012 Edition. U.S. Department of Health and Human Services, Indian Health Service, Office of Public Health Support, Division of Program Statistics

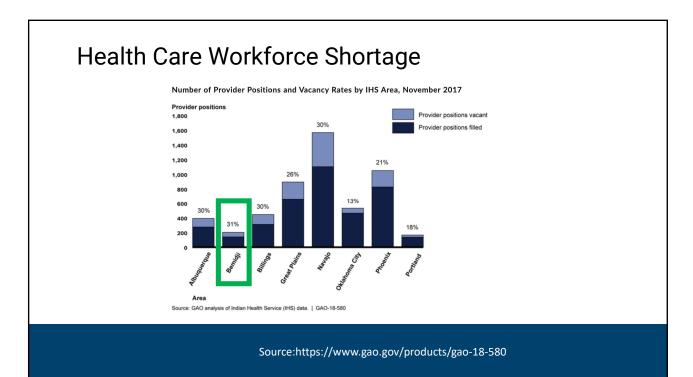
Upper Midwest Comorbidities – Inter-Tribal Heart Study 1992-94

Table 2. Prevalence of hypertension and diabetes according to hypertensive and diabetic status: Inter-Tribal Heart Project preliminary data


		Prevalence o	Hypertension		Prevalence of Diabetes					
	Total	Population	Dial	etics	Total Pope	ılation	Hyper	tensives		
	%	n	%	n	%	n	%	n		
Age										
25 -44	16	61	31	8	10	26	21	8		
45-64	37	157	49	45	34	93	47	45		
65+	62	98	67	37	56	58	61	37		
Gender										
Women	29	171	49	51	29	109	44	51		
Men	39	146	58	39	27	68	47	39		
Total	33	317	52	90	28	177	46	90		

- Inter-Tribal Heart Study
 - Surveyed random
 sample of members of
 Red Lake Nation, White
 Earth Reservation, and
 Menomonie tribal
 members with detailed
 survey and physical
 exam in the 1990s
- Found very high rates of T2DM among patients above 65 (~ 56%) and HTN (62%)

Casper M, et al. Blood pressure, diabetes, and body mass index among Chippewa and Menominee Indians: the Inter-Tribal Heart Project Preliminary Data. Public Health Rep. 1996;111 Suppl 2(Suppl 2):37-9.


59

CHALLENGES IN PREVENTION AND TREATMENT OF CARDIOVASCULAR DISEASE

- Many US government treaties with American Indian tribes stipulated US government provision of health services, previously through Bureau of Indian Affairs
- 1954 Indian Transfer Act established Indian Health Service as vehicle for fulfilling treaty obligations
- Significant differentials in healthcare spending among federal programs

Source: https://www.gao.gov/products/gao-19-74r

Social Determinants of Health

"Red Lake suffers from some of the most crippling economic conditions of any community in the country. Unemployment stands at 60%. The *average* income at Red Lake is well below the poverty level. High school graduation rates are the lowest in the state."

- David Treuer, Rez Life

63

Geography

- One grocery store on Red Lake Reservation
- Bemidji is nearest major town, about 40 minute drive

Geography

-"Food insecurity is endemic in many Indigenous communities⁴⁰⁻⁴²—of the 27 000 square miles of land on the Navajo Nation, the largest US reservation, there are only 13 grocery stores"

- Eberly, et al.

65

ASSETS AND OPPORTUNITIES FOR THE FUTURE

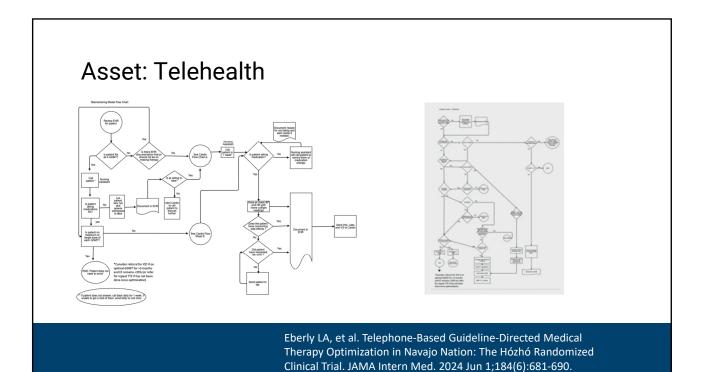
Asset: Task Shifting

- Task shifting = giving specific tasks to healthcare workers who have not typically done them as part of their scope of practice
- Pharmacist led clinics
 - Experience with PrEP in the Albuquerque IHS
 - · Follow up required every 3 months for PrEP
 - Pharmacists with prescriptive authority to order PrEP, labs, lab data interpretation
 - · Pharmacy led follow up visits
- Anecdotal experience: Red Lake IHS pharmacists
 - · Job satisfaction with greater clinical responsibility

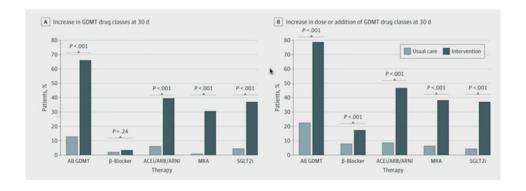
Source: https://www.hiv.gov/blog/pharmacist-led-program-expands-access-prep-indian-health-service

67

Asset: Telehealth


Telephone-Based Guideline-Directed Medical Therapy Optimization in Navajo Nation

The Hózhó Randomized Clinical Trial


Lauren A. Eberly, MD, MPH^{1,2,3,4,5}; Ada Tennison, CNA¹; Daniel Mays, MD¹; <u>et al</u>

- HF patients with EF < 40%, encounter at IHS site in last 12 months
- Randomized to telehealth uptitration of GDMT vs usual care
 - · Stepped-wedge-cluster randomized trial
 - Each cluster crossed over into intervention every 30 days

Eberly LA, et al. Telephone-Based Guideline-Directed Medical Therapy Optimization in Navajo Nation: The Hózhó Randomized Clinical Trial. JAMA Intern Med. 2024 Jun 1;184(6):681-690.

Asset: Telehealth

Eberly LA, et al. Telephone-Based Guideline-Directed Medical Therapy Optimization in Navajo Nation: The Hózhó Randomized Clinical Trial. JAMA Intern Med. 2024 Jun 1;184(6):681-690.

Asset: Telehealth

- Results
 - By end of the study
 - 96/99 patients on beta blocker (97%)
 - 89/91 patients on RASS inhibitor (98%)
 - 60/77 patients on ARNI (78%)
 - 65/77 patients on SGLT2
 - 60/77 on MRA (78%)
 - 81% on all 4 drug classes

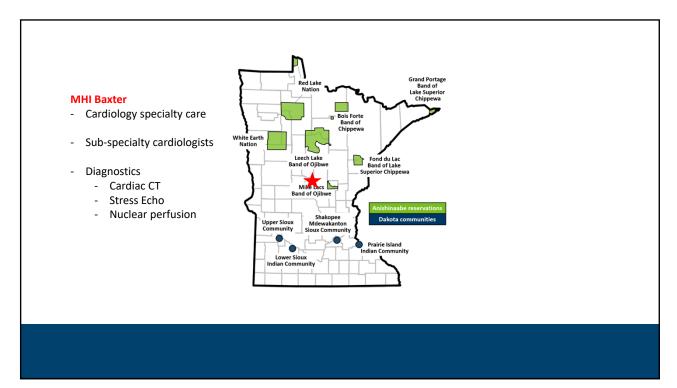
Eberly LA, et al. Telephone-Based Guideline-Directed Medical Therapy Optimization in Navajo Nation: The Hózhó Randomized Clinical Trial. JAMA Intern Med. 2024 Jun 1;184(6):681-690.

71

Asset: Tribal Compacting

- 1990s
 - Tribal compacting budgetary discretion to be flexible in providing services
 - Tribes can choose:
 - · Direct health care services by IHS
 - Fund own programs overseen by the tribe
- · Flexibility in a complex system
 - · COVID-19 vaccination drive
 - Mammogram
 - · Community Health Workers

Source: Kruse, et al. The Indian Health Service and American Indian/Alaska Native Heath Outcomes. Annual Review of Public Health 2022


Opportunities

- Diagnostic innovations
 - Artificial intelligence EKG, diagnostic imaging
- Therapeutic innovations
 - · Inclisiran longer acting duration may aide with adherence
- Community-led innovations and initiatives

73

Opportunities

- Hard work of delivering high quality care consistently for multiple chronic illnesses
 - · Diabetes care
 - Hypertension
 - Hyperlipidemia
 - · Cardiovascular disease
- Addressing social determinants of health in prevention
 - Food deserts
 - · Economic and social factors

"Do we see [human disparity] as a human predicament--an inescapable result of frailty of our existence? That would be correct had these sufferings been really inescapable, but they are far from that. Preventable diseases can indeed be prevented, curable ailments can certainly be cured, and controllable maladies call out for control. Rather than lamenting the adversity of nature, we have to look for a better comprehension of the social causes of horror and also of our tolerance of societal abominations." - Amartya Sen