

Association of Regurgitant Fraction and Liver Mapping Analysis Quantified by Cardiac Magnetic Resonance with Outcomes in Patients with Chronic Tricuspid Regurgitation

Davide Margonato, Maurice Enriquez-Sarano, Miho Fukui, Asa Phichaphop, Paul Sorajja, Vinayak Bapat and João L. Cavalcante Minneapolis Heart Institute and Foundation, Minneapolis, MN, USA

Methods
 Comprehensive clinical and imaging data were collected from consecutive patients evaluated by CMR from 2019 to 2023 who had quantitative evaluation of RV volumes and TR severity.
526 patients with TR quantification by CMR
21 patients with severe left- sided valvular disease 0 patients with > mild PR 6 patients with competing risk for non- CV death (4 active metastatic neoplasia, 2 advanced neurodegenerative disease)
489 patients included Primary outcome: All Cause Death+ HF hospitalization under medical management
CRF* TCT

	Re	sults	
Clinical and Echo parameters	N= 489	CMR parameters	N= 489
Age (years)	68 (55-76)	RV EDVi (ml/m ²)	94 (77-117)
Gender (female)	201 (41%)	RV ESVi (ml/m ²)	43 (33-58)
History of coronary artery disease	117 (24%)	RVEF (%)	52 (45-58)
Atrial Fibrillation	193 (39%)	RV SV (ml)	94 (78-112)
Chronic Kidney Disease	127 (26%)	TV Reg. Volume (ml)	19 (12-31)
NYHA class III/IV	78 (16%)	TV Reg. Fraction (%)	21 (14-33)
TRISCORE	2 (1-3)	RV Free Wall Long Strain (%)	-20 (23-18)
Diuretic therapy	201 (41%)	RA ESVi (ml/m²)	47 (33-65)
PASP (mmHg)	33 (28-44)	LVEF (%)	53 (43-61)
TADi (mm/m2)	19 (18-22)	Myocardial ECV (n=385,%)	28 (25-32)
IVC (mm)	17 (15-22)	Liver ECV (n=371,%)	30 (27-35)

Slide 10

JC0 If the intent is to describe the natural history of TR severity by CMR under medical management - would not make more sense to remove from this slide the 53 who had TV intervention?

A question you might get:

- Significant TR undertreatment - 11% overall which is a reality. Even if you consider that all those that were treated have TRF> 30%, it's only 33% of that group. Have those numbers in mind.

Cavalcante, Joao L, 2024-10-19T20:39:26.381

Results- seco	ondary ar	nalysis o	n L-E
Variables Associated with Right HF	L-ECV <32% (n= 222, 60%)	L-ECV <u>≥</u> 32% (n= 149, 40%)	p-value
NYHA Class III/IV	16 (7%)	53 (35%)	<0.001
Jugular Venous Distension	10 (5%)	42 (28%)	<0.001
Peripheral Edema	13 (6%)	43 (29%)	<0.001
TRISCORE	1 (1-2)	4 (2-6)	<0.001
PASP (mmHg)	30 (25-36)	41 (31-55)	<0.001
RV EDVi (ml/m2)	83 (71-102)	110 (87-131)	<0.001
RVEF (%)	54 (48-60)	46 (37-56)	<0.001
Forward RVSV (ml)	70 (53-88)	57 (43-78)	<0.001
TV Reg. Volume (ml)	15 (11-21)	33 (18-50)	<0.001
TV Reg. Fraction (%)	18 (13-24)	36 (22-48)	<0.001
RVFWLS (%)	22 (24-19)	18 (20-15)	<0.001
IVC (mm)	15 (14-18)	22 (17-26)	<0.001

R	esults
Baseline patient characteristics (n=48)	
Age, yrs	69.90 ± 8.31
Women	39.6% (19)
Clinical presentation	
Chronic CAD	81.3% (39)
Unstable angina	10.4% (5)
NSTEMI	8.3% (4)
Diabetes Mellitus	29.2% (14)
Hypertension	81.3% (39)
Dyslipidemia	83.3% (40)
BMI, kg/m²	30.9 ± 7.1
LVEF, %	59.0 ± 7.8
Heart Failure	17.0% (8)
Prior PCI	10.4% (5)
Prior CABG	0% (0)
Prior MI	6.3% (3)
Atrial fibrillation or flutter	33.3% (16)
Current, smoker	6.3% (3)
СКД	10.6% (5)
Baseline eGFR (mL/min/1.73m²)	73.8±14.7
Baseline creatinine, mg/dL	1.01 [0.83, 1.10]

	Results
Baseline patient characteristics (n=46)	
Pre-PCI FFR _{ct}	0.70 [0.62-0.74]
Calcium score	609.00 [207.5. 1.165.5]
Heart rate, bpm	65.4 ± 13.3
Sinus rhythm at the time of CCTA	83.0% (39)
Contrast, mL	105.5 [100.0, 121.3]
Radiation dose (DLP)	305.0 [170.0, 413.0]
kV	110 [100-120]
Beta blockers	69.6% (32)
Nitrate dose	
<0.8 mg	0 (0%)
≥0.8 mg	100.0% (48)
CAD-RADS	
3	25.0% (12)
4A	62.5% (30)
4B	4.2% (2)
5	6.3% (3)
Dominance	
Right	77.1% (37)
Left	22.9% (11)
Severe stenosis (≥70%) per CCTA	
LAD	63.6% (21)
D1	12.1% (4)
D2	0.0% (0)
Circumflex	3.1% (1)
OM1	0 (0%)
RCA	21.2% (7)

	Results
Procedural and in-hospital outcomes (n=48)	
Technical success	100% (48)
Procedural success	97.9% (47)
Length of hospital stay	1 (1-1)
Same day discharge	25.0% (12)
Procedure time, min	89.0 [70.5, 108.0]
Fluoroscopic time, min	18.4 [13.7, 26.5]
Contrast volume, ml	140.0 [125.0, 180.0]
Air kerma radiation, Gy	1.24 [0.81, 1.96]
Vessels treated with CT-guided PCI (n=55)	
Intravascular imaging	
IVUS	85.5% (47)
ОСТ	14.5% (8)
Calcium modification strategies	
IVL	20.0% (11)
Atherectomy	3.6% (2)
Target vessel	
LM	1.8% (1)
LAD	50.9% (28)
D1	5.5% (3)
Circumflex	3.6% (2)
OM1	1.8% (1)
OM2	0.0% (0)
RCA	32.7% (18)
Ramus	3.6% (2)

18 of 39

PPCM remains poorly understood

- Pathogenesis
 - Hormonal changes
 - prolactin, sFLT-1, activin A, progesterone
 - **Genetic Contribution**
 - 15% heterozygous loss-of-function genetic variant
 - Myocarditis? not supported by myocardial biopsy or cMRI

• Risk Factors

- Hypertensive diseases of pregnancy (e.g. preeclampsia)
- Ethnicity: African American
- Advanced maternal age
- (>30)
- Multiple gestations
- Tobacco Use
- Diabetes

World-Class Cardiovascular Research & Education

Arany Z. New England Journal of Medicine. January 2024

GDMT is recommended for patients with PPCM

Drug	Persisting heart failure and absence of complete LV recovery	Complete and sustained recovery (LVEF > 55% and NYHA functional class I)	in LVEF <35% to (LMWH): consider suppress prolactin LVEF <35% to preven
Beta-blocker	Essential for all patients in standard or maximally tolerated dosages	Continue all drugs (beta-blocker, ACEI/ARB/ARNI, MRA) for at least 12–24 months after full recovery, individual approach/discuss with patient. Discontinue stepwise and monitor symptoms and LV function:	release thrombus
		1. MRA 2. ACEI/ARB/ARNI	 Contraception and
ACEI	Essential for all patients in standard or maximally tolerated dosages	3. Beta-blocker	multidisciplinary
ARB ARNI	Recommended in patients who do not tolerate ACEI Recommended in patients with LVEF < 40% who are symptomatic despite maximal dosages of beta-blocker, ACEI/ARB and MRA		management of
MRA	Recommended in patients with LVEF < 40%, preferably eplerenone due to less hormonal side effects and less blood pressure reduction compared to spironolactone		 Risk of recurrent PPCN
lvabradine	Recommended in patients in sinus rhythm with a persisting heart rate > 70 b.p.m. at rest despite maximal tolerated beta-blocker un-tiration	Discontinue if heart rate <50 b.p.m. and/or in case of complete recovery	(10-50%)
Diuretics	Recommended in patients with fluid overload	Taper dose/discontinue if no signs of fluid overload, maintain only if part of antihypertensive therapy	 Lactation consideratio
lease note that omprehensive : VCEI, angiotensi	t initiation of all heart failure drugs is only possible in patients who do not summary of compatibilities with breastfeeding). in-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, any VBA mismericaria dreament anamatic NULA New York block for	breastfeed (see also Table 3 and online supplementary Toble S1 for a more intensin receptor-neprilysin inhibitor; LV, left ventricular; LVEF, left ventricular	Bauersachset al. European Journal Heart Failure. July 2019.

Study Aims
Evaluate the current state of PPCM diagnosis within Allina Health
Adjudicate PPCM and Characterize Patients with an Accurate PPCM Diagnosis
Assess GDMT Initiation and Maintenance within the Cohort
Minneapolis Heart Institute Foundation World-Class Cardiovascular Research & Education

World-Class Cardiovascular Research & Education

History			
Characteristic	N = 105 ¹	History	N = 105 ¹
Mother's Age at Delivery	30.0 (27.0, 35.0)	Gestational Hx (prior	
Unknown	6	pregnancies)	
Race		0	29 (29%)
White	65 (62%)	1	21 (21%)
Asian	5 (4.8%)	2	9 (8.9%)
Black/African American	29 (28%)	3	20 (20%)
Multiracial	1 (1.0%)	4+	22 (22%)
American Indian or Alaska	3 (2.9%)	Pre-existing Conditions	
Native		Hypertension	20 (19%)
Patient Declined	2 (1.9%)	Diabetes Mellitus	8 (7.6%)
¹ Median (IQR); n (%)		Tobacco Use (Current)	17 (16%)

Minneapolis Heart Institute Foundation

World-Class Cardiovascular Research & Education

46

Other Cardiac Complications	N=65
Preeclampsia	21 (31.3%)
HFpEF	10 (14.9%)
Myocardial Infarction	4 (6%)
Chronic Hypertension	3 (4.5%)
Kidney Failure	3 (4.5%)
Endocarditis	1 (1.5%)
Spontaneous coronary artery dissection	1 (1.5%)
Takotsubo syndrome	1 (1.5%)
Unknown	21 (32.3%)
	n(%)

World-Class Cardiovascular Research & Education

Increased follow-up visits with Cardiology correlate with GDMT status

References & Acknowledgements

- Arany Z. Peripartum Cardiomyopathy. N Engl J Med. 2024 Jan 11;390(2):154-164. doi: 10.1056/NEJMra2306667. PMID: 38197818.
- Goli R, Li J, Brandimarto J, et al. Genetic and Phenotypic Landscape of Peripartum Cardiomyopathy. Circulation.
- 2021;143(19):1852-1862. doi:10.1161/CIRCULATIONAHA.120.052395
- Honigberg MC, Givertz MM. Peripartum cardiomyopathy. BMJ. 2019;364:k5287. Published 2019 Jan 30. doi:10.1136/bmj.k5287
- Arany Z. It Is Time to Offer Genetic Testing to Women With Peripartum Cardiomyopathy. Circulation. 2022;146(1):4-S. doi:10.1161/CIRCULATIONAHA.122.059177
 Bauersachs J, König T, van der Meer P, et al. Pathophysiology, diagnosis and management of peripartum
- cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. European Journal of Heart Failure. 2019;21(7):827-843. doi:https://doi.org/10.1002/ejhf.1493
- Davis Melinda B., Arany Zolt, McNamara Dennis M., Goland Sorel, Elkayam Uri. Peripartum Cardiomyopathy. Journal of the American College of Cardiology. 2020;75(2):207-221. doi:10.1016/i.jacc.2019.11.014 Mubarik A, Chippa V, Iqbal AM. Postpartum Cardiomyopathy. In: StatPearls. StatPearls Publishing; 2024. Accessed
- August 5, 2024. http://www.ncbi.nlm.nih.gov/books/NBK534770/
- Sliwa K, Bauersachs J, Arany Z, Spracklen TF, Hilfiker-Kleiner D. Peripartum cardiomyopathy: from genetics to management. Eur Heart J. 2021 Aug 21;42(32):3094-3102. doi: 10.1093/eurheartj/ehab458. PMID: 34322694.
- Ersilia M. DeFilippis, Catriona Bhagra, Jillian Casale, Patricia Ging, Francesca Macera, Lynn Punnoose, Kismet Rasmusson, Garima Sharma, Karen Sliwa, Sara Thorne, Mary Norine Walsh, Michelle M, Kittleson, Cardio-Obstetrics and Heart Failure: JACC: Heart Failure State-of-the-Art Review, JACC: Heart Failure, Volume 11, Issue 9, 2023, Pages 1165-1180, ISSN 2213-1779, https://doi.org/10.1016/j.jchf.2023.07.009

Research Team

- Dr. Retu Saxena, MD
- Dr. Peter Eckman, MD
- Sarah Schwager, RN
- Gretchen Benson, RDN
- Rahmah Jingo, BA
 - Maya Palmer, BA

Biostatisticians/Scientific Services

- Ellen Cravero
- Andrew Willett
- Larissa Stanberry

World-Class Cardiovascular Research & Education

Speaker's name: Asa Phichaphop

 ${\boldsymbol{ \nabla}}$ I do not have any potential conflicts of interest to report

Fig. 4 Flow and timing. Scheme, depicting the timing of the pre-procedural CTCA and CAG before TAVI. (*CTCA* computed tomography coronary angiography, *CAG* coronary angiography, *NR* not reported, *TAVI* transcatheter aortic valve implantation procedure)

Gati M et al. Eur Radiol 2022 Aug;32(8):5189-5200.

	N	(%)	TP (%)	TN (%)	FP (%)	FN (%)	Sensitivity	Specificity	PPV	INPV
Pontone et al. (2011) [13]	60	26 43.3%	23 38.3%	30 50.0%	4 6.7%	3 5.0%	88.5%	88.2%	85.2%	90.9
Andreini et al. (2014) [18]	325	97 29.8%	87 26.8%	207 63.7%	21 6.5%	10 3.1%	89.7%	90.8%	80.6%	95.4
Hamdan (2015) [19]	115	49 42.6%	47 40.9%	48 41.7%	18 15.7%	2 1.7%	95.9%	72.7%	72.3%	96.0
Dpolski (2015) [20]	475	270 56.8%	265 55.8%	76 16.0%	129 27.2%	5 1.1%	98.1%	37.1%	67.3%	93.8
Harris et al. (2015) [21]	100	74 74.0%	73 73.0%	15 15.0%	11 11.0%	1 1.0%	98.6%	57.7%	86.9%	93.8
Matsumoto (2017) [10]	60	24 40.0%	22 36.7%	21 35.0%	15 25.0%	2 3.3%	91.7%	58.3%	59.5%	91.3
Rossi et al. (2017) [22]	140	58 41.4%	53 37.9%	45 32.1%	37 26.4%	5 3.6%	91.4%	54.9%	58.9%	90.0
Total	1,275	598 46.9%	570 44.7%	442 34.7%	235 18.4%	28 2.2%	95.3%	65.3%	70.8%	94.0
Prev prevalence of coronary a	positives, N i rtery disease	number of st as reported,	tudied subj TN true ne	ects, NPV ne gatives, TP t	egative pro-	edictive val	ue, PPV posit	ive predictiv	0.88 [0	73.0.9
<i>Prev</i> prevalence of coronary a	positives, N i rtery disease	number of st as reported,	tudied subj TN true ne	ects, NPV ne gatives, TP t	egative pre rue positiv	edictive val	ue, PPV posit	ive predictiv	ve value,	
Pontone 2011	positives, N i rtery disease	number of si as reported,	tudied subj TN true ne	ects, NPV no gatives, TP t 0.88 [0.71, 0 0.90 [0.82, 0	egative pro rue positiv 0.96]	edictive val	ue, <i>PPV</i> posit	ive predictiv	0.88 [0 0.91 [0	.73, 0.9
Pontone 2011 Andreini 2014 Pontone 2011 Andreini 2014 Hamdan 2014	positives, N n rtery disease	number of si as reported,	tudied subj TN true ne	ects, NPV na gatives, TP t 0.88 [0.71, 0 0.90 [0.82, 0 0.96 [0.86, 0	0.96] 0.94]	edictive val	ue, <i>PPV</i> posit	predictiv	0.88 [0 0.91 [0 0.73 [0	.73, 0.9 .86, 0.9 .61, 0.8
Vuccomes of individual studie Vr false negatives, FP false Prev prevalence of coronary a Pontone 2011 Andreini 2014 Hamdan 2014 Opolski 2014	positives, N i rtery disease	number of si as reported,	tudied subj TN true ne	ects, NPV na gatives, TP t 0.88 [0.71, 0 0.90 [0.82, 0 0.96 [0.86, 0 0.98 [0.96, 0	egative pro rue positiv 0.96] 0.94] 0.99] ⊢	edictive val	ue, <i>PPV</i> posit	predictiv	0.88 [0 0.91 [0 0.73 [0 0.37 [0	.73, 0.9 .86, 0.9 .61, 0.8 .31, 0.4
Vuccomes of individual studie Vr false negatives, <i>FP</i> false <i>Prev</i> prevalence of coronary a Pontone 2011 Andreini 2014 Hamdan 2014 Opolski 2014 Harris 2015	positives, N n rtery disease	number of si as reported,	tudied subj	ects, NPV na gatives, TP t 0.88 [0.71, 0 0.90 [0.82, 0 0.96 [0.86, 0 0.98 [0.96, 0 0.99 [0.93, 1	egative pro rue positiv .996] .994] .999] ⊢ .00]	edictive val	ue, <i>PPV</i> posit	predictiv	0.88 (0 0.91 (0 0.73 (0 0.37 (0 0.58 (0	.73, 0.9 .86, 0.9 .61, 0.8 .31, 0.4 .39, 0.7
Vuicomes of individual studie Vr false negatives, FP false Prev prevalence of coronary a Pontone 2011 Andreini 2014 Hamdan 2014 Opolski 2014 Harris 2015 Matsumoto 2016 —	positives, N i rtery disease	number of si as reported,	tudied subj	ects, NPV ng gatives, TP t 0.88 [0.71, 0 0.90 [0.82, 0 0.96 [0.86, 0 0.98 [0.96, 0 0.99 [0.93, 1 0.92 [0.74, 0	egative pro rue positiv 	edictive val es	ue, <i>PPV</i> posit	■ 	0.88 [0 0.91 [0 0.73 [0 0.37 [0 0.58 [0 0.58 [0	.73, 0.9 .86, 0.9 .61, 0.8 .31, 0.4 .39, 0.7
Vuicones of individual studie Yrrv prevalence of coronary a Pontone 2011 Andreini 2014 Hamdan 2014 Opolski 2014 Harris 2015 Matsumoto 2016 Rossi 2017	positives, N n rtery disease	number of si as reported,	tudied subj	ecets, NPV n gatives, TP t 0.88 (0.71, 0 0.90 (0.82, 0 0.96 (0.86, 0 0.98 (0.96, 0 0.99 (0.93, 1 0.92 (0.74, 0 0.91 (0.81, 0	egative pro rue positiv 	edictive val	µe, <i>PPV</i> posit		0.88 [0 0.91 [0 0.73 [0 0.37 [0 0.58 [0 0.58 [0 0.55 [0	.73, 0.9 .86, 0.9 .61, 0.8 .31, 0.4 .39, 0.7 .42, 0.7
Viicones of individual studie Vi false negatives, PF false Prev prevalence of coronary a Pontone 2011 Andreini 2014 Hamdan 2014 Opolski 2014 Harris 2015 Matsumoto 2016 Rossi 2017 Summary	positives, N n rtery disease	number of s as reported,	udied subj TN true ne	cects, NPV m gatives, TP t 0.88 (0.71, 0 0.90 (0.82, 0 0.96 (0.86, 0 0.98 (0.96, 0 0.99 (0.93, 1 0.92 (0.74, 0 0.91 (0.81, 0 95 [0.93, 0	egative pre rue positiv 9.96] 9.94] 9.99] ⊢ .00] 9.98] 9.96] 97]	edictive val es → ↓ ↓ ↓	µe, <i>PPV</i> posit	• − I	0.88 [0 0.91 [0 0.73 [0 0.37 [0 0.58 [0 0.58 [0 0.55 [0.65	.73, 0.9 .86, 0.9 .61, 0.8 .31, 0.4 .39, 0.7 .42, 0.7 .44, 0.6

But there are patients and patients...

58

Objectives

- *Ability* of standard pre-TAVR CTA protocol without medications, to serve as a *screening test* to rule out obstructive CAD
- Outcomes related to coronary events of both approaches.
- *Concordance* for obstructive CAD for both approaches
- Factors associated with the needed for ICA

Methodology

Inclusion criteria

- consecutive TAVR patients with documented evaluation of CAD
 - By invasive angiography
 - By TAVR CTA (0.6 mm thickness, systolic recons, 512 matrix)
- TAVR procedure were performed afterward

Exclusion criteria

• CABG patients

Outcomes: coronary related events up to 1-year after TAVR

- Coronary revascularization
- Acute coronary syndrome
- Unplanned invasive angiography

	Result		
Characteristic	TAVR-CTA N = 464 ¹	ICA N = 701 ¹	p-value ²
Age, yrs	81 (76, 86)	81 (76, 87)	0.7
Male gender	246 (53%)	381 (54%)	0.7
Diabetes	126 (27%)	229 (33%)	0.045
Hypertension	382 (82%)	608 (87%)	0.039
Presence of pacemaker	58 (13%)	83 (12%)	0.7
History of PCI	90 (19%)	104 (15%)	0.041
Bicuspid valve	23 (5.0%)	45 (6.4%)	0.3
LVEF, %	63 (56 <i>,</i> 65)	62 (55, 66)	0.2
Atrial fibrillation	162 (35%)	258 (37%)	0.5
Aortic valve area, cm ²	0.8 (0.7, 0.9)	0.8 (0.7, 0.9)	0.086
STS-PROM, %	2.7 (1.8, 3.9)	3.1 (2.0, 4.7)	<0.001
¹ Median (IQR); n (%) ² Wilcoxon ran	k sum test; Pearson's Ch	i-squared test.	

Baseline pre-TAVR evaluation					
	Characteristic	TAVR-CTA N = 464 ¹	ICA N = 701 ¹	p-value ²	
	Obstructive CAD	173 (37%)	290 (41%)	0.2	
	Pre-TAVR angiography	217 (47%)	701 (100%)	<0.001	
	Pre-TAVR PCI	63 (14%)	134 (19%)	0.014	
	Complete revascularization	44 (70%)	100 (75%)	0.5	
	PCI / angiography ratio	0.29	0.19	0.003	

Coronary evaluation by TAVF	R-CTA, 464 patients		
Characteristic	IRR ¹	95% CI	p-value
Male gender	1.54	1.16, 2.07	0.004
Age, yrs	1	0.98, 1.02	>0.9
LVEF, %	1.01	0.99, 1.02	0.4
AF	1.01	0.76, 1.34	>0.9
Diabetes	1.3	0.97, 1.73	0.08
Hypertension	1.4	0.93, 2.21	0.12
History of PCI	2.07	1.55, 2.75	<0.001
1 IRR = Incidence Rate Ratio, CI =	Confidence Interval. Abb	reviation as in Table 1	
1 IRR = Incidence Rate Ratio, CI = TAVR-CTA couldn't exclude CA (suspected or uninterpr	D, 148 (32%) Confidence Interval. Abb D, 148 (32%) etable)	reviation as in Table 1	

Conclusion

When compared to routine invasive coronary angiography, use of routine pre-TAVR CTA evaluation of CAD, even without pre-medication can expedite TAVR work-up while:

- Safely excluding significant CAD up to **two-thirds** of patients without missing any severe left main or proximal LAD lesion.
- Maintaining comparable **low incidence of coronary events** at 1 year after TAVR equal to routine invasive cath
- Providing reassuring high negative predictive value.

Male patients and history of PCI had increased need of invasive coronary angiography after TAVR-CTA evaluation.

