Peripheral Arterial Disease: Review and Updates

Katherin Leckie, MD, MS
Vascular and Endovascular Surgery
Disclosures

• None relevant to today’s talk

Outline

• Epidemiology and risk factors
• Pathology and clinical presentation
• Natural history and medical management
• Anatomy of disease
• Interventions options and outcomes
• BASIL-2 and BEST-CLI
Epidemiology of Peripheral Arterial Disease (PAD)

- Global prevalence 5.6% affecting 236 million adults
 - US prevalence of 7% affecting 8.5 million adults
- Over 40% of patients with CAD have PAD
 - PAD associated with left main and multivessel CAD
- 25-50% of TAVR patients have PAD

Risk Factors for PAD

- Increasing age
- Male sex
- Smoking
- HTN
- DM
- HLD
- Renal insufficiency

Risk Factors for PAD

- Male sex
- Smoking
- Hypertension
- Dyslipidemia
- Diabetes mellitus
- End-stage renal disease on dialysis

Pathology of PAD

- Atherosclerosis
 - Early lesions may regress
 - Progression, rupture/erosion with thrombosis

Pathology of PAD

- Other arterial occlusive disease:
 - Embolism
 - Popliteal artery entrapment syndrome
 - Popliteal artery aneurysm thrombosis
 - Large or medium vessel vasculitis
 - Cystic adventitial disease
 - Persistent sciatic artery
 - External iliac endofibrosis

Clinical Presentation of PAD

- PAD is conventionally defined as ABI < 0.9, TBI < 0.7 or significant drop in ABI post-exercise

- Clinically:
 - Asymptomatic 75%
 - Intermittent claudication (IC) 20-30%
 - Chronic limb threatening ischemia (CLTI) 1-3%
 - Rest pain > 2 weeks or tissue loss
Rutherford Categories of Chronic Limb Ischemia

<table>
<thead>
<tr>
<th>Grade</th>
<th>Category</th>
<th>Clinical description</th>
<th>Objective criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Asymptomatic-no hemodynamically significant occlusive disease</td>
<td>Normal treadmill or reactive hyperemia test</td>
</tr>
<tr>
<td>1</td>
<td>Mild claudication</td>
<td>Completes treadmill exercise; AP after exercise > 50 mmHg but at least 20 mmHg lower than resting value</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>Moderate claudication</td>
<td>Between categories 1 and 3</td>
</tr>
<tr>
<td>3</td>
<td>Severe claudication</td>
<td>Cannot complete standard treadmill exercise, and AP after exercise < 50 mm Hg</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>4</td>
<td>Ischemic rest pain</td>
<td>Resting AP < 40 mmHg, flat or barely pulsatile ankle or metatarsal PVR; TP < 30 mm Hg</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>Minor tissue loss non-healing ulcer, focal gangrene with diffuse pedal ischemia</td>
<td>Resting AP < 60 mm Hg, ankle or metatarsal PVR flat or barely pulsatile; TP < 40 mm Hg</td>
</tr>
<tr>
<td>6</td>
<td>Major tissue loss-extending above TM level, functional foot no longer salvageable</td>
<td>Same as category 5</td>
<td></td>
</tr>
</tbody>
</table>

AP: ankle pressure; PVR: pulse volume recording; TM: transmetatarsal; TP: toe pressure.

Intermittent Claudication

- Natural history of IC over 10 years
 - < 10% any amputation
 - 18% revascularization
 - 23% rest pain
 - 30% tissue loss

Chronic Limb Threatening Ischemia

- 1 year mortality of 20-25%, 4 year up to 50%
- 1 year major amputation rate of 25% without revascularization

Presentation:
- 29% rest pain
- 45% ulceration
- 26% gangrene

Intervention:
- Non-surgical 29%
- Revascularization 58%
- Primary amputation 13%

Chronic Limb Threatening Ischemia

Patient survival over 4 years following diagnosis of critical limb ischemia

Freedom from major amputation over 4 years following diagnosis of critical limb ischemia

Management of PAD

- Asymptomatic disease
 - Smoking cessation, antihypertensives, glycemic control
 - Antiplatelet +/-
 - Statin
 - Surveillance +/-
Management of PAD

• Intermittent Claudication
 • Risk factor modification, statin, Antiplatelet
 • Supervised exercise program
 • Cilostazol
 • Annual surveillance with non-invasive vascular testing

Management of PAD

• Intermittent Claudication
 • Revascularize for function NOT limb salvage
 • Intervention for good risk candidates with severe lifestyle limitations with expected durability of intervention > 2 years
 • Consider addition of Xaralto 2.5 BID after procedure
Management of PAD

• VOYAGER-PAD
 • 6,564 patients randomized to addition of Xaralto 2.5 BID or placebo to usual medical therapy after revascularization procedure
 • Reduction in cardiovascular event at 3 years at 17.3% compared to 19.9% (P=0.009) with increase in major bleeding 5.94% versus 4.06% (P=0.007).

Management of PAD

• Chronic limb threatening ischemia
 • Revascularization is recommended
 • A multidisciplinary approach with appropriate wound care is recommended
 • 30-50% will not be a candidate for revascularization
Anatomy of PAD

• Aortoiliac
 • Smoking claudics

• Femoropopliteal
 • Older smokers

• Tibial
 • DM/ESRD with CLTI

• Multilevel
 • Older smokers
Anatomy of PAD

ESRD Smoking

23

Intervention for PAD

• Open and endovascular

24
Intervention for PAD

• Open revascularization
 • Endarterectomy
 • Focal lesion
 • Common femoral, aorta, popliteal, tibial
 • Often used in conjunction with bypass or stent

Intervention for PAD

• Open revascularization
 • Bypass: Inflow, outflow, conduit
 • Conduit
 • Autologous
 • Prosthetic
 • Alternative biologics
Intervention for PAD

• Endovascular Revascularization
 • Angioplasty
 • Atherectomy
 • Stents
 • Drug coated balloons
 • Drug coated stents

• Endovascular Adjuncts
 • Wires, catheters, sheaths
 • Crossing and re-entry devices
 • Intravascular lithotripsy
 • Tackling stents
 • Intravascular ultrasound
 • Embolic protection devices
 • Suction and mechanical thrombectomy
Intervention for PAD

• TransAtlantic Inter-Society Consensus (TASC)
 • 2000 and 2007

• Aortoiliac occlusive disease
 • A – endovascular preferred
 • D – open surgery preferred

Intervention for PAD

• Durability of open intervention for aortoiliac disease

<table>
<thead>
<tr>
<th>Indication</th>
<th>5-year % patency (range)</th>
<th>10-year % patency (range)</th>
<th>Procedure</th>
<th>5-year % patency (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Claudication</td>
<td>CLI</td>
<td>Claudication</td>
<td>CLI</td>
</tr>
<tr>
<td>Limb based</td>
<td>91 (80–94)</td>
<td>87 (80–88)</td>
<td>86 (85–92)</td>
<td>81 (78–83)</td>
</tr>
<tr>
<td>Patient based</td>
<td>85 (85–89)</td>
<td>80 (72–82)</td>
<td>79 (70–85)</td>
<td>72 (61–76)</td>
</tr>
</tbody>
</table>
| Patency at 5 and 10 years after aortobifemoral bypass | Patency rates at 5 years after extra-anatomic bypass

Intervention for PAD

- **Patency after endovascular intervention for aortoiliac disease**
 - For TASC A-B, primary and secondary patency rates 5 years are 88% and 97%.
 - Meta-analysis of endovascular treatment of TASC C–D lesions, 5-year primary patency 60% - 86%, secondary patency 80% to 98%

Intervention for PAD

- **Femoropopliteal occlusive disease**
 - A – endovascular preferred
 - D – open surgery preferred
Intervention for PAD

• Durability of open intervention for femoropopliteal disease

<table>
<thead>
<tr>
<th></th>
<th>Claudication</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vein</td>
<td>80</td>
<td>66</td>
</tr>
<tr>
<td>Above-knee PTFE</td>
<td>75</td>
<td>47</td>
</tr>
<tr>
<td>Below-knee PTFE</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

5-year patency following femoral popliteal bypass

Weighted mean primary patency rates for vein versus PTFE grafts for above knee femoropopliteal bypass

Intervention for PAD

• Patency after endovascular intervention for femoropopliteal occlusive disease
 • Covered stent 5 year patency for >10cm SFA lesions of 62.4%
 • Bare metal stent 3 year patency for <8cm SFA lesions 71.0% and >8cm SFA lesions 50.5%
 • DCB 3 year patency for SFA lesions <18cm 69.5%
 • DES 5 year patency for SFA lesions < 13cm 66.4%
Intervention for PAD

• BASIL-2 and BEST-CLI

 • BASIL-2
 • UK, Denmark, Sweden, 2014-2022
 • Vein bypass versus endovascular therapy in 345 CLTI patients

 • BEST-CLI
 • United States, Canada, Finland, Italy, and New Zealand, 2014-2019
 • Bypass versus endovascular therapy, 2 cohorts based on presence of vein, in 1830 CLTI patients, all low surgical risk

Intervention for PAD

• BASIL-2

 • Primary outcome favored endovascular therapy
 • Bypass: 63% amputation/death
 • Endo: 53% amputation/death
 • Driven by higher mortality after bypass, no difference in limb loss
Intervention for PAD

- BEST-CLI – Cohort 1
 - Primary outcome favored bypass
 - Bypass: 42.6% MALE/death
 - Endo: 57.4% MALE/death
 - Driven by higher reintervention after endovascular therapy
Thank you!