

1

Inotropes and Cardiogenic Shock DoReMi Trial

Benjamin Hibbert MD PhD Interventional Cardiologist Mayo Clinic Rochester, MN

Evidence Base and the Knowledge Gap

- · Cardiology and critical care as fields produce large amounts of low-quality evidence
- · Both specialties utilize poorly-justified beliefs to guide therapy of patients in absence of robust data

The only true wisdom is in knowing you known nothing - Socrates

3

Evidence Base and the Knowledge Gap

A thing is not necessarily true because a man dies for it – Oscar Wilde

- NICE sugar intensive glucose control in ICU NNH 33 for death
- CAST I trial suppression of PVCs post MI NNH of 21 for death
- CAST II trial suppression of PVCs post MI NNH of 50 for death
- TTM2 therapeutic hypothermia post ROSC NNH 14 for unstable arrhythmia
- PARAMEDIC2 epinephrine in OHCA NNH 166 for survival with severe neurological impairment MAYO CLINIC

Evidence Base and the Knowledge Gap

Success is most often achieved by those who don't know that failure is inevitable – Coco Chanel

- · We need guidelines to better reflect uncertainty of recommendations
 - · Road map of future research
 - · Help clinicians understand the limitations of current data
- · We need randomized clinical trials that address fundamental beliefs of cardiac/critical care
 - The most complex analysis of the largest dataset cannot overcome the power of randomization
- We need iterative processes that evaluates evidence and data in context of advancing technology and care

5

Cardiogenic Shock

- Primary cardiac dysfunction leading to critical organ hypoperfusion
- Common presentation for both ischemic and non-ischemic HD
- High mortality and morbidity

MAYO CLINIC

Baran et al. 2022

Cardiogenic Shock

- Prognosis altering therapies are limited
- Revascularization
- Vasopressors
- Inotropes
- NO-Synthase Inhibitors
- MCS
 - IABP
 - Percutaneous VAD
 - ECLS

Combes et al. 2020 Lancet

7

Cardiogenic Shock

- 148 studies over 25 years
- 2.3M patients
- In-hospital/30d mortality 36%

Figure 2. Trends in mortality in cardiogenic shock from 1995 to 2019.

MAYO CLINIC

Jung & Hibbert 2024 under review

Cardiogenic Shock

• DoReMi – 196 patients
• ECLS shock – 420 patients
• ECMO CS trial – 122 patients
• DANGER shock – 360 patients
• DANGER shock – 360 patients
• Descention of the patients of the patients
• Description of the patients
• Description of the patients
• Description of the patients
• Doremin E- Notality (underboweed)

• Dimay E- Notality (underboweed)

• Doremy E- Notality (underboweed)

• Dimay E- Notality (underboweed)

• Doremy E- Notality (underbo

Thiele et al. 2020 EHJ

Cardiogenic Shock

- The Storm on the Sea of Galilee
 - Rembrandts only sea scape
 - Stolen 1990 in Boston remains missing
 - Estimated worth 500M

11

Objectives

- Understand the evidence gaps in CS management
- Understand the evidence supporting the use of inotropes in CS
- Review outcomes of DoReMi trial
- Review integration of resident training into running a clinical trial
- Future directions

Milrinone & advanced heart failure

PROMISE trial

- 1088 patients with NYHA III/IV heart failure ambulatory
- · Randomized to milrinone vs. placebo
- Increase in mortality by 28% worse in most symptomatic
- Increase hospitalization, adverse events

OPTIME CHF

- 951 patients with acute exacerbation of chronic heart failure
- · 48 hour infusion of milrinone or placebo
- · No difference in death or median number of days in hospital
- · Increased hypotension and new atrial arrhythmias

13

Guidelines in Cardiogenic Shock

- ESC
 - IIb C continues inotropes may be considered in patients with low output and hypoperfusion as a bridge to MCS or transplant
- ACC/AHA HF
 - IIa B Patients with advanced HF who are eligible for and awaiting MCS/transplant – inotrope therapy as bridge is reasonable
 - IIb B In select patients who are ineligible for MCS/transplant as a palliative therapy
 - III B In patients with HF long-term use of either continuous or intermittent for reasons other than above is potentially harmful

Background in CS

- Medical management relies on vasopressors/inotropes but prospective, randomized data is lacking
- Milrinone and dobutamine are among the two most widely used agents, but clinical equipoise remains

FIGURE 2A.

	Dobutamine		Milrinone			Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Abraham, 2005	589	4226	248	2021	49.3%	1.16 [0.99, 1.36]		
Aranda, 2002	0	19	1	17	0.2%	0.28 [0.01, 7.40]		
Arnold, 2006	134	1311	34	433	10.5%	1.34 [0.90, 1.98]	-	
Hauptman, 2008	683	8762	138	1949	37.6%	1.11 [0.92, 1.34]	★	
Scroggins, 2005	2	40	5	27	0.6%	0.23 [0.04, 1.30]		
Yamani, 2001	21	269	6	60	1.9%	0.76 [0.29, 1.98]		
Total (95% CI)		14627		4507	100.0%	1.13 [1.00, 1.29]	•	
Total events	1429		432					
Heterogeneity: Tau2 =	0.00; Ch	$^2 = 5.4$	2. df = 5	(P = 0	.37); 12 =	8%	to a la de	
Test for overall effect:	Z = 1.89	(P = 0.	06)				0.01 0.1 1 10 100 Favours Dobutamine Favours Milrinone	

Forest plot of in-hospital mortality with dobutamine versus milrinone inotrope therapy.

Mathew et al. 2019 CIM

15

CAPITAL Do-Re-Mi

- Milrinone versus Dobutamine in the Treatment of Cardiogenic Shock
- Mathew, R.*, Di Santo, P.*, Jung, R., Marbach, J., Hutson, J., Simard, T., Ramirez, F.D., Harnett, D.T., Merdad, A., Almufleh, A., Weng, W., Abdel-Razek, O., Fernando, S., Kyeremanteg, K., Bernick, J., Wells, G.A., Chan, V., Froeschl, M., Labinaz, M., Le May, M., Russo, J., Hibbert, B.

Methodology

- Randomized clinical trial, with blinding of both physicians and patients
- Stratified by LV/BiV versus RV dysfunction
- Drug titration by clinical evaluation
- Composite primary end point of:
 - All cause in-hospital mortality
 - Resuscitated CA
 - Need for transplant or MCS
 - Non-fatal MI
 - TIA or stroke
 - New initiation of RRT

17

Secondary Outcomes

Efficacy

- Individual components of primary outcome
- Total time on inotropes
- Need for, and total days on, NIV and/or IMV
- Incidence of AKI
- Normalization of lactate
- Arrhythmia requiring medical team intervention

Safety

- Arrhythmia requiring medical intervention
- Need for, or an increase, in oral or IV anti-arrhythmic therapy
- · Ventricular arrhythmias
- Need for, or an increase, in vasopressor therapy

19

21

Secondary outcomes

No difference in any outcome measured

Dutcome	Milrinone (N = 96)	Dobutamine (N = 96)	Relative Risk or Hazard Ratio (95% CI)†	P Value
Primary outcome: composite of in-hospital death from any cause, resuscitated cardiac arrest, receipt of cardiac transplant or mechanical circulators support, nonfatal myocardial infaction, transient ischemic attack or stroke diagnosed by a neurologist, or initiation of renal replacement therapy $-$ mo. (%)	47 (49)	52 (54)	0.90 (0.69–1.19)	0.47
Secondary outcomes				
In-hospital death from any cause — no. (%)	35 (37)	41 (43)	0.85 (0.60-1.21)	
Resuscitated cardiac arrest — no. (%)	7 (7)	9 (9)	0.78 (0.29-2.07)§	
Receipt of cardiac transplant or mechanical circulatory support — no. (%)	11 (12)	14 (15)	0.78 (0.36–1.71)§	
Nonfatal myocardial infarction — no. (%)	1 (1)	0	_	
Transient ischemic attack or stroke — no. (%)	1 (1)	2 (2)	0.50 (0.05-5.50)§	
Initiation of renal replacement therapy — no. (%)¶	21 (22)	16 (17)	1.39 (0.73-2.67)	
Median cardiac ICU length of stay (IQR) — days	4.5 (2.0-7.0)	5.5 (3.0-10.0)	-	
Cardiac ICU length of stay ≥7 days — no. (%)	31 (32)	42 (44)	0.74 (0.51-1.07)	
Median hospital length of stay (IQR) — days	16 (6-28)	15 (6-27)	_	
Median total time receiving inotropes (IQR) — hr	36 (18-79)	39 (19-64)	_	
Receipt of noninvasive or invasive mechanical ventilation after randomization — no. (%)	6 (6)	7 (7)	0.86 (0.30-2.46)	
Median total time receiving noninvasive or invasive mechanical ventilation (IQR) — hr	48 (6–120)	48 (12–120)	_	
Acute kidney injury — no. (%) ¶	86 (92)	85 (90)	1.02 (0.94-1.12)	
Normalization of lactate level — no. (%)**	33 (46)	36 (56)	0.80 (0.56-1.15)	
Arrhythmia leading to medical team intervention — no. (%)±	48 (50)	44 (46)	1.19 (0.85-1.57)	

23

Results

• No identified subgroup with divergent results

	_	•		_		
	Milrinone	Dobutamine	Relative Risk (95% CI)	p-value		Interaction p-val
Sex						
Males	29/60 (48.3%)	32/62 (51.6%)	0.94 (0.66-1.34)	0.71	_	0.73
Females	18/36 (50.0%)	20/34 (58.8%)	0.85 (0.55-1.31)	0.46		
Age						
≥75	24/40 (60.0%)	27/41 (65.9%)	0.91 (0.65-1.27)	0.59	— = ⊢	0.98
<75	23/56 (41.1%)	25/55 (45.5%)	0.90 (0.59-1.38)	0.64	— -	
Ventricular subgro	up					
Left/biventricular	44/88 (50.0%)	48/88 (54.5%)	0.92 (0.69-1.22)	0.55		0.73
Right ventricular	3/8 (37.5%)	4/8 (50.0%)	0.75 (0.24-2.33)	1.00°		_
Etiology of left ven	tricular dysfunction					
Ischemic	32/66 (48.5%)	32/62 (51.6%)	0.94 (0.66-1.33)	0.72		0.65
Non-ischemic	15/30 (50.0%)	20/33 (60.6%)	0.83 (0.53-1.30)	0.40		
Severity of left ven	tricular dysfunction					
Mild/moderate	17/38 (44.7%)	23/36 (63.9%)	0.70 (0.46-1.08)	0.10	 ■-	0.14
Severe	29/57 (50.9%)	28/59 (47.5%)	1.07 (0.74-1.55)	0.71		
Baseline renal dyst	function					
Mild/moderate	35/78 (44.9%)	39/77 (50.6%)	0.89 (0.64-1.23)	0.47	_ =	0.65
Severe	5/9 (55.6%)	6/8 (75%)	0.74 (0.36-1.50)	0.62*		
Concomitant vasor	pressor use at inotro	pe initiation				
No	21/58 (36.2%)	14/41 (34.1%)	1.06 (0.61-1.83)	0.83		0.80
Yes	25/37 (67.6%)	38/55 (69.1%)	0.98 (0.74-1.30)	0.88		

MAYO CLINIC

25

Limitations

- Only in-hospital outcomes were evaluated and differences in outcomes may exist beyond the index hospitalization, as seen in the SHOCK trial
- Our study was designed to be pragmatic, and replicate clinical practice, in which shock is most often defined clinically, rather than hemodynamically
- Our study found a mortality rate of 40%, which is similar to trials that used hemodynamic parameters for enrollment

Conclusions

- We were unable to demonstrate a difference between Milrinone and Dobutamine in the primary composite outcome or in important secondary outcomes
- Selection of inotropes could reasonably be based on physician comfort, cost and response to therapy

27

CAPITAL Do-Re-Mi

- Milrinone versus Dobutamine in the Treatment of Cardiogenic Shock
- Mathew, R.*, Di Santo, P.*, Jung, R., Marbach, J., Hutson, J., Simard, T., Ramirez, F.D., Harnett, D.T., Merdad, A., Almufleh, A., Weng, W., Abdel-Razek, O., Fernando, S., Kyeremanteg, K., Bernick, J., Wells, G.A., Chan, V., Froeschl, M., Labinaz, M., Le May, M., Russo, J., Hibbert, B.

BB use and inotrope selection

- Impact of baseline beta-blocker use on inotrope response and clinical outcomes in cardiogenic shock: a subgroup analysis of the DOREMI trial
- Di Santo P., Mathew, R., Jung, R., Simard, T., Skanes, S., Mao, B., Ramirez, F., Marbach, J., Abdel-Razek, A., Motazedian, P., Parlow, S., Boczar, K., D'Egidio, G., Hawken, S., Bernick, J., Wells, G.A., Dick, A., So, D.Y., Glover, C., Russo, J., Mc Guinty, C., Hibbert, B.

29

Background

- Classic teaching and some observational data suggests Milrinone may be preferred in patients on BR
- ESC guidelines recommend against Dobutamine if BBs have been used

31

Conclusions

- BB therapy in the preceding 24hrs to developing CS was *protective* from cardiac arrest and death in the early resuscitation period
- BB therapy was not predictive of response to inotrope therapy either in hemodynamic or clinical parameters
- Modulating arrhythmic risk in CS may offer mechanisms to reduce adverse outcomes in CS patients

Di Santo et al. 2021 Crit Care

Biomarkers and outcomes

- Lactate Clearance as a surrogate for mortality in CS: Insights from the DOREMI trial
- Marbach, J., Di Santo, P., Kapur, K., Thayer, K., Simard, T., Jung, R., Parlow, S., Abdel-Razek, O., Fernando, S., Labinaz, M., Froeschl, M., Mathew, R., Hibbert, B.

33

Background

- Risk stratification with selection of high-risk biomarkers for CS patients can be used clinically for therapy augmentation and in research as validated surrogates
- Lactate clearance has been suggested as a potential therapeutic target for CS management, but validation studies are few
- Unclear if inotrope selection preferentially impacts LC in populations of CS

Results

• MV model strongest predictor of mortality at all time points out to 24 hours – lactate clearance

Proportion of Patients with Normal Lactate

Survivors Non-Survivors**

Proportion of Patients with Normal Lactate

**Prop

Conclusions

- LC is a strong independent predictor of survival at all time points from 8-36 hours.
- Complete lactate normalization by 8 hours increases chance of survival 4-fold
- Lactate normalization/clearance may be used as a surrogate end-point in exploratory studies for early CS therapies

Marbach et al. JAHA 2022

37

Valvular HD in CS

- Significant valvular dysfunction and outcomes in cardiogenic shock: a substudy of the DOREMI trial
- Parlow, S., Weng, W., Di Santo, P., Jung, R., Simard, T., Goh, CY, Chan, V., Labinaz, M., Froeschl, M., Mathew, R., Hibbert, B.

Parlow et al. 2022 CJC

39

Valvular HD and CS

- · Concomitant valvular lesions in patients with CS is common
 - 40% of patients in CS had one significant valvular lesion
 - 5% significant AS, 21% significant MR, 17% significant TR

MAYO CLINIC

Parlow et al. CJC 2022

Conclusions

- Valvular HD is common in unrestricted populations of CS
- Presence of significant AS or significant MR is associated with a 2-fold and 60% increased risk of mortality
- Valve disease is a potential novel therapeutic target in CS

41

Lessons learned from DoReMi

- Pragmatic trials in "difficult" populations can be run in a low cost/high yield fashion
- Fundamental questions in critical care cardiology should be addressed despite prior beliefs
- Integrating residents in trial development and execution is a high yield endeavor

MR as a therapeutic target in CS

NEW RESEARCH PAPERS

STRUCTURAL

Transcatheter Mitral Valve Repair in Cardiogenic Shock and Mitral Regurgitation

A Patient-Level, Multicenter Analysis

Richard G. Jung, BSc, **h.** Trevor Simard, MD, **h.** Christopher Kovach, MD, MSc, **d.** Kelsey Flint, MD, **f.
Creighton Don, MD, **Pietro Di Santo, MD, **f. Marianna Adamo, MD, **Luca Branca, MD, **Francesca Valentini, MD, **
Tomás Benito-González, MD, **Felipe Fernández-Vázquez, MD, **Pid, **Bodrigo Estévez-Loureiro, MD, **Pid, **Alessandra Berardini, MD, **Sinoina Parlow, MD, **Lessandra Berardini, MD, **Sinisa Mrs, **MD, **Sinisa Morr, MLIS, **Maros Levi, MD, **Can Manovel, MD, **Rosa Cardenal-Piris, MD, **Jose Díaz Fernandez, MD, **Mony Shuvy, MD, **Dav Haberman, MD, **Alessandra Sala, MD, **Mohamad A. Alkhouli, MD, **Claudia Marini, MD, **Marta Bargagna, MD, **Davide Schiavi, MSc, **Paolo Denti, MD, **Sinisa Markovic, MD, **Nicola Buzzatti, MD, **Unicent Chan, MD, **Davide Schiavi, MD, **Mohamad A. Michouli, MD, **Mohamad A. Markovic, MD, **Nicola Buzzatti, MD, **Theorico Pappalardo, MD, **Maurizio Taramasso, MD, **Pid, **Menianin Hibbert, MD, **Pid.**
Federico Pappalardo, MD, **Maurizio Taramasso, MD, **Pid, **Menianin Hibbert, MD, **Pid.**

Jung & Simard et al. JACC CI 2021

43

Results

- Age 70 years
- 87% SCAI C-E
- Predominantly male
- Individual patient data on 141

MAYO CLINIC

Results

• In hospital mortality of 15.6%, 90 day mortality 29.5%

MAYO CLINIC

45

Results

- MR reduction strongly associated with improved outcomes
- Differences may exist between patients in whom MR reduction can be achieved and in those in whom it cannot
- Efficacy was excellent (device success 87% 2+ or less) and no adverse procedural events noted

MAYO CLINIC

Mitral regurgitation as a therapeutic target

- TEER
 - TVT registry tracks cases in USA
 - · Reports baseline characteristics
 - · Reports procedural outcomes

Transcatheter Edge-to-Edge Mitral Valve Repair in Patients With Severe Mitral Regurgitation and Cardiogenic Shock

Trevor Simard, MD,^a Sreek Vemulapalli, MD,^{b,c} Richard G. Jung, MD, PnD,^d Andrew Vekstein, MD,^{b,c} Amanda Stebbins, MS,^{c,c} David R. Holmes, MD,^a Andrew Czarnecki, MD, MSc,^a Benjamin Hibbert, MD, PnD,^d Mohamad Alkhouli, MD^a

Simard et al. JACC 2022

47

MR and TEER – TVT analysis

Successful mitral regurgitation (M R) reduction was achieved, with 94.5% of patients having >3+ MR preprocedurally that was reduced to 12% of patients with >3+ MR in follow-up. Indeed, 88% of patients maintained <2+ MR severity grade at last available follow-up echocardiogram.

MR and TEER – TVT analysis

TEER in CS

- In-hospital mortality of 9.1% vs. 16.4% in case of device failure
- By 1 year 20% absolute reduction in mortality with procedural success

49

Conclusions

- Mitraclip therapy in selected patients is safe with no major procedural complications and has similar efficacy to other treated populations
- Observed mortality is significantly lower than expected and successful MR reduction is strongly associated with improved outcome
- A better procedural outcome is predictive of better clinical outcome
- · A randomized clinical trial is needed to confirm these findings

Simard et al. JACC 2022

Future Directions

- DOREMI − 2
 - Multicenter trial of inotrope vs. placebo in the early resuscitation of stage C/D cardiogenic shock
 - Establish safety/necessity of inotropes in CS
- MINOS
 - Multicenter trial of mitraclip for stage C/D shock in patients with >/= 3+ MR

51

DoReMi-2

- DOREMI 2 (n 346)
 - Inotrope (mil or dob) vs. placebo in initial resuscitation 12 hours
 - · Inclusion criteria
 - SCAI C/D shock and over 18 years of age
 - · Exclusion criteria
 - OHCA
 - On inotrope in preceding 24 hours
 - Severe obstructive valve lesion/dynamic outflow obstruction
- Primary Outcome
 - All cause mortality in hospital or sustained hypotension, lactate >3.5 at 6 hours, need for MCS, arrhythmia leading to emergent CV or cardiac arrest

MINOS trial

- MINOS (n-144)
 - Mitraclip vs. standard of care in patients with SCAI C/D shock and 3+ or greater MR
 - Inclusion criteria
 - SCAI C/D shock
 - · Or unable to wean inotrope/ventilator support
 - Exclusion criteria
 - Revascularization in preceding 48 hours
 - Degenerative MR and surgical candidate
 - Prior intervention on mitral valve/IE or left sided mass/thrombus
- Primary Outcome
 - In hospital all cause mortality, transplant, implantation of durable LVAD or discharge on palliative inotropes

53

Questions?

Benjamin Hibbert MD PhD FRCPC hibbert.benjamin@mayo.edu

