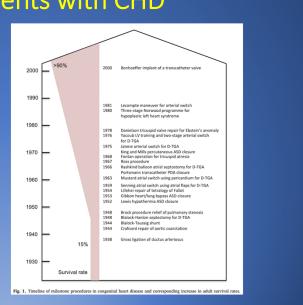
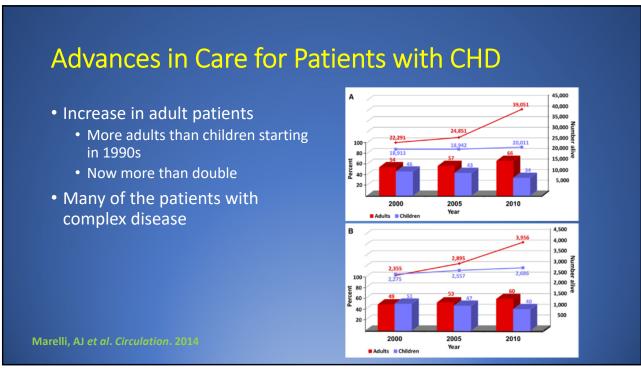


Disclosures


None


3

Advances in Care for Patients with CHD

- Significant medical and surgical advances
 - Improving surgical techniques
 - ICU and anesthetic care
 - Transcatheter interventions
- Survival to adulthood:
 - 15% >90%

Brida, M et al. Int J Cardiol CHD. 2020

Popu	ılation ir	a Unitad Sta	<u> </u>		
			tes		
Category and Age Group	CHD Severity/Race- Ethnicity	Estimated US Prevalence per 1000 (95% Confidence Interval), %	Estimated No. of Individuals (95% Confidence Interval)*		
CHD severity			,		
All ages	Overall	7.85 (7.79–7.92)	2 425 000 (2 405 000–2 444 000)		
	Severe	0.92 (0.90-0.94)	283 000 (277 000–290 000)		
Children	Overall	13.21 (13.03–13.39)	980 000 (966 000–993 000)		
	Severe	1.66 (1.60 1.73)	123 000 (110 000 128 000)		
Adults	Overall	6.16 (6.10–6.22)	1 444 500 (1 431 000–1 459 000)		
	Severe	0.68 (0.66–0.70)	160 000 (155 000–165 000)		
Race-ethnicity					
Children	Non-Hispanic white	13.31 (13.12–13.49)	620 000 (612 000–629 000)		
	Non-Hispanic black	12.69 (12.50–12.88)	133 000 (131 000–135 000)		
	Hispanic	13.26 (13.08–13.45)	227 000 (224 000–230 000)		
Adults	Non-Hispanic white	6.36 (6.29–6.42)	1 104 000 (1 094 000–1 115 000)		
	Non-Hispanic black	5.63 (5.56–5.69)	155 000 (153 000–156 000)		
	Hispanic	5.58 (5.52–5.65)	186 000 (184 000-188 000)		

ACHD Population in United States

- Often compared to tsunami
- Patients lost to follow-up after aging out of pediatric practice
- Not enough cardiologists training in ACHD
 - Poor reimbursement
 - Lack of exposure
- ACHD care limited to larger academic centers

7

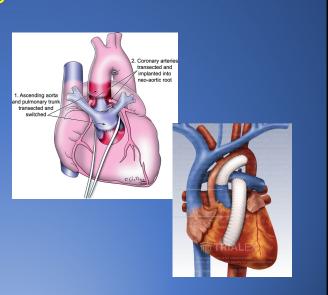
Standardizing Care

- Creation of accredited ACHD centers of excellence
- Extensive requirements
 - Only 51 centers in 26 states
 - Adjacent to large pediatric centers
- Many ACHD clinics that don't meet all requirements

CCC CT Surgery Requirements

- Surgical director certified by ABTS in congenital heart surgery
- Minimum of two surgeons
 - 24/7 availability for consultation or emergency surgery
- Expertise in mechanical support and cardiac transplant
- All surgical patients discussed in multidisciplinary format
 - Includes ACHD cardiology, interventional, EP, imaging, anesthesia, ICU

UWMC ACHD Program


- 7 ACHD cardiologists
- 2 ACHD interventional
 - 1 from Children's
- 3 EP
- 3 HF/Tx cardiologists
- 1 dedicated anesthesiologist
- CTICU
- Two surgeons

11

What Type of Surgeon?

- Pediatric Congenital Surgeon
 - Primarily at children's hospital, may come to adult hospital for adult cases
 - Very little enthusiasm in congenital community
 - More interested in neonatal and infant repairs
 - Adult cases not appealing

What Type of Surgeon?

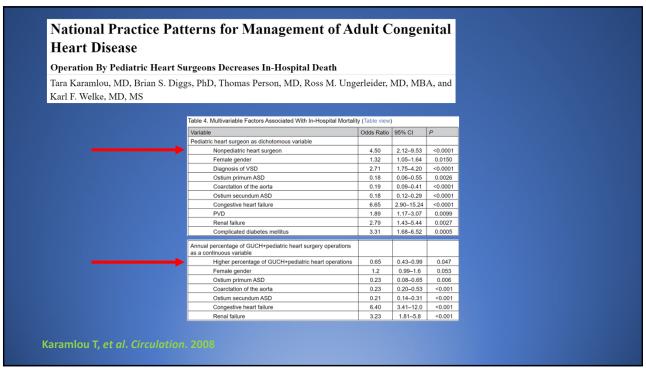
- Adult Surgeon With Congenital Background
 - Common early on (1990s-2000s)
 - More contemporary surgeons less comfortable
 - Less congenital training
 - Less favorable outcomes

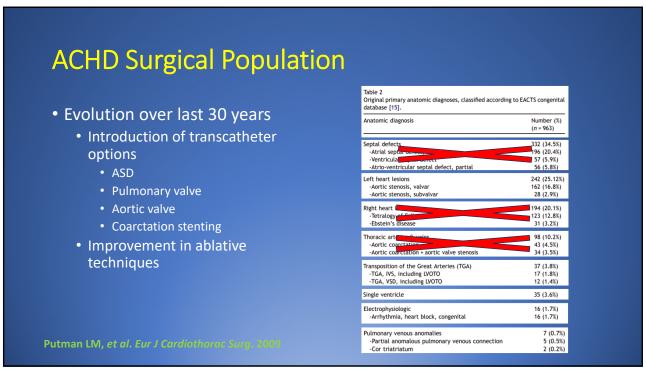
13

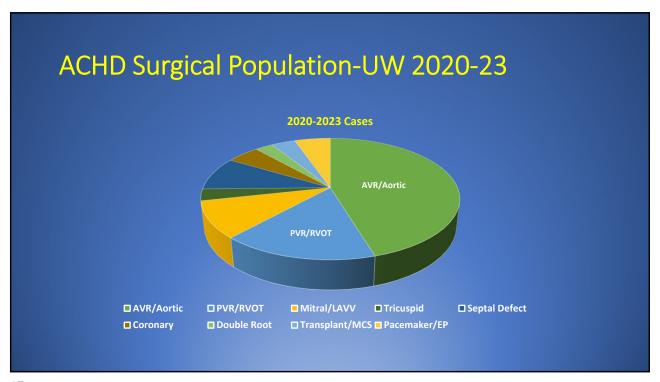
National Practice Patterns for Management of Adult Congenital Heart Disease

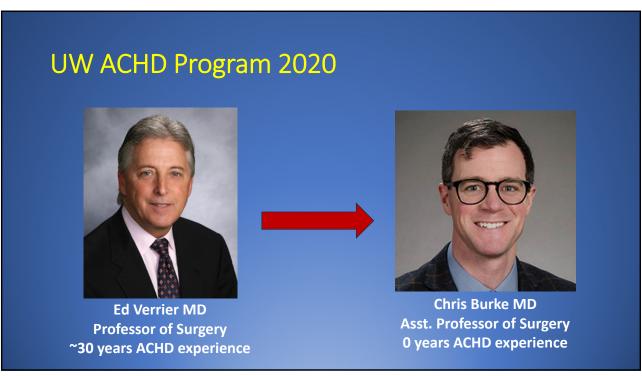
Operation By Pediatric Heart Surgeons Decreases In-Hospital Death

Tara Karamlou, MD, Brian S. Diggs, PhD, Thomas Person, MD, Ross M. Ungerleider, MD, MBA, and Karl F. Welke, MD, MS


- National Inpatient Sample
 - 1988-2003
 - ~40,000 ACHD operations
 - Compared "Adult" to "Pediatric"
- Pediatric surgeons >75% case volume
- Major outcome death
 - Minor outcomes LOS, cost


variable	weighted Frequency±3D
Patients	
Mean±SD age, y	50.0±1.8
Female, n (%)	22 732±739 (56.2±0.6)
Patient diagnosis, n (%)	
HLHS	40±14 (0.099±0.035)
l-TGA	195±37 (0.481±0.089)
d-TGA	236±40 (0.582±0.097)
DORV	195±37 (0.481±0.089)
Other transposition	80±21 (0.198±0.051)
PAVSD	73±21 (0.181±0.051)
ToF	1013±81 (2.50±0.19)
TAPVR	130±24 (0.322±0.060)
Coarctation of the aorta	1625±104 (4.02±0.24)
VSD	5307±212 (13.12±0.46)
Ostium primum ASD	993±74 (2.45±0.17)
Ostium secundum ASD	30 574±1135 (75.56±0.72)


Weighted Frequency+SD

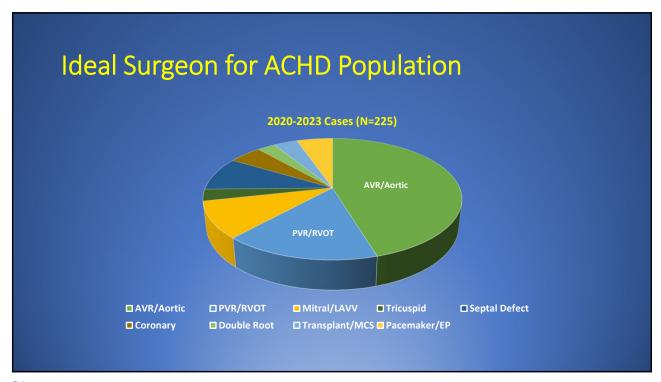

Variable

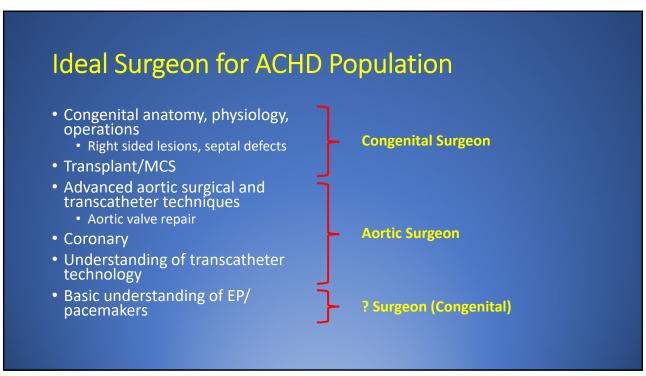
Karamlou T, et al. Circulation. 20

March 2020 "So...I have a case I was hoping you could help me with..." 26 yo M, hx of d-TGA Six previous sternotomies 3 previous aortic homografts Stent in L pulmonary artery Aortic endocarditis with severe Al

March 2020-Conduct of Operation

- R axillary cannulation
- Redo Sternotomy
- Takedown of LeCompte
- Aortic Root replacement (19mm St. Jude)
- Cabrol reconstruction of coronary arteries
- Reconstruction of LPA with tube graft
- Temporary closure with Cabrol patch
- Many more procedures in 2020




Cabrol Graft

Cabrol Patch

20

Referral Pattern-UW

Burke Clinic

- Aortic Valve disease
- Ascending aortic aneurysm
- Aortic arch pathology

Mauchley Clinic

- Pulmonary valve/RVOT pathology
- Septal Defects
- Tricuspid valve/Ebstein's
- Sequelae of AVSD repair
- Anomalous coronaries
- Transplant evaluations

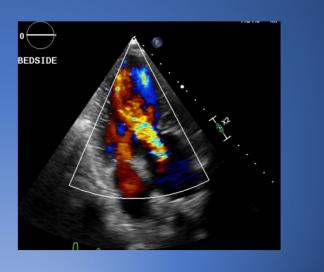
23

Combined Cases

- Ross procedure
- Aortic valve repair
- Double root replacement
- Aortic root/ascending in combination with complex anatomy
- Complex LVOT obstruction
- Unusual coronary anomalies

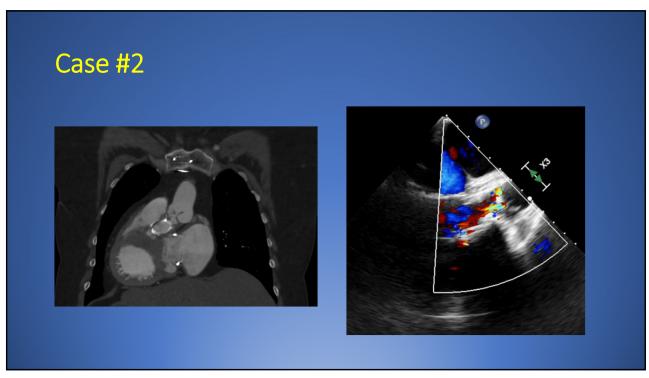
Case #1

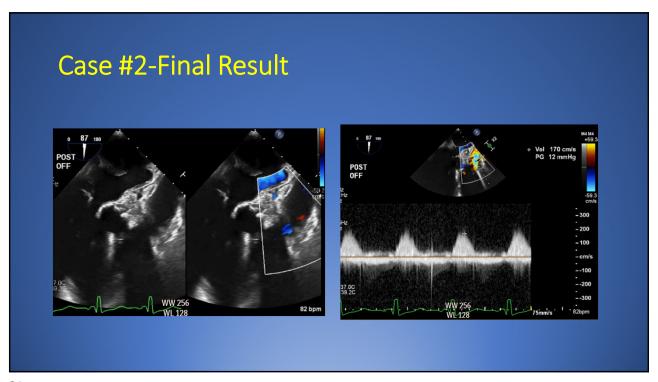
- 25 yo M with DILV, L-TGA, coarctation.
- Surgical palliation with:
 - Norwood procedure (DKS with aortic arch reconstruction, shunt)
 - Bidirectional Glenn shunt
 - Extracardiac fenestrated Fontan
- Followed for ascending aneurysm
 - Now 7.1cm, severe neo-Al, intermittent chest pain, mild decrease in LV function

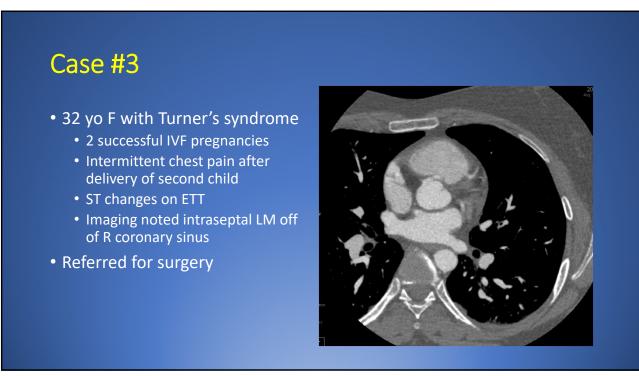


25

Case #1-Surgical Approach


- R axillary artery cannulation, L anterior thoracotomy for LV vent, venous cannulation SVC and femoral vein
- Cool to 18°C, X-clamp, ostial cardioplegia
 - Native aortic root separated from DKS
 - Zone 2 arch replacement with branched graft
 - Bentall (On-x 27/29) to neo-aortic root
 - Native aortic root anastomosed to Bentall graft

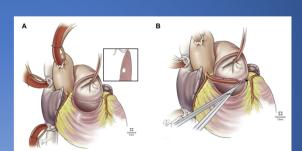


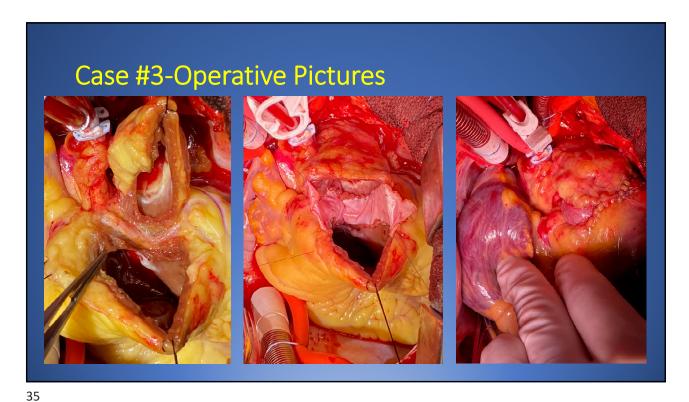

Case #2

- 46 year old with heterotaxy syndrome, situs inversus with mirrorimage dextrocardia, TAPVR, DORV, and partial AVSD.
 - TAPVR, DORV, partial AVSD all repaired as a child
 - Revision of ASD patch and TV annuloplasty as young adult
- Progressive heart failure symptoms related to severe LVOT obstruction and aortic insufficiency
 - VSD patch calcified
 - Long, narrow LVOT

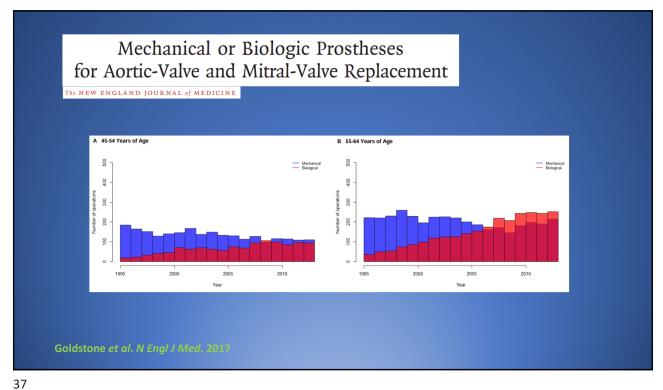
Case #2-surgical approach Redo sternotomy, aortic/RA cannulation Ostial cardioplegia Resection of AV leaflets and inspection of LVOT Incision into RV, near complete removal of VSD patch Dacron Konno patch to replace VSD patch and enlarge annulus 23 mm St Jude mechanical valve

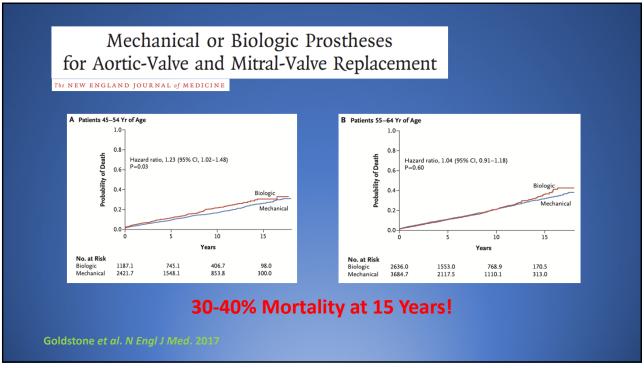
Case #3

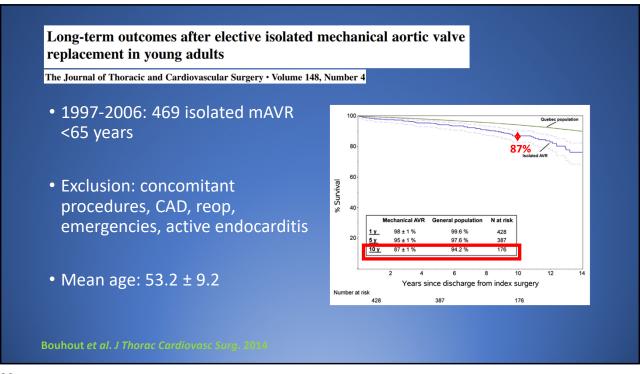

- Normal LM ostium
- No evidence of compression at rest
- Left dominant system

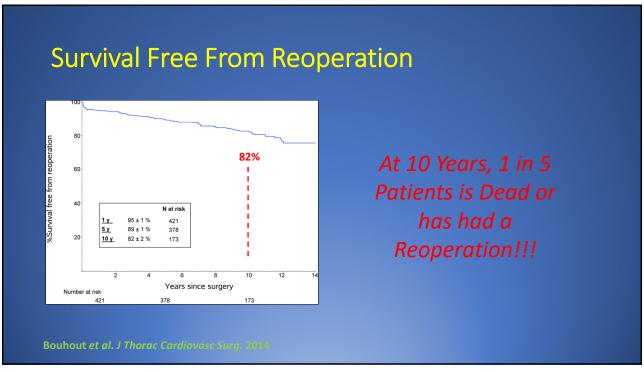

33

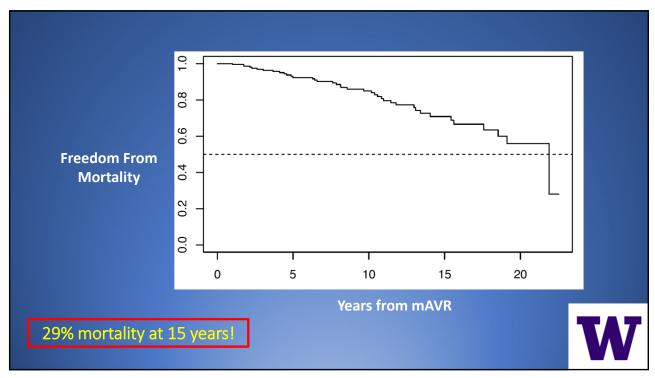
Case #3-Surgical Approach

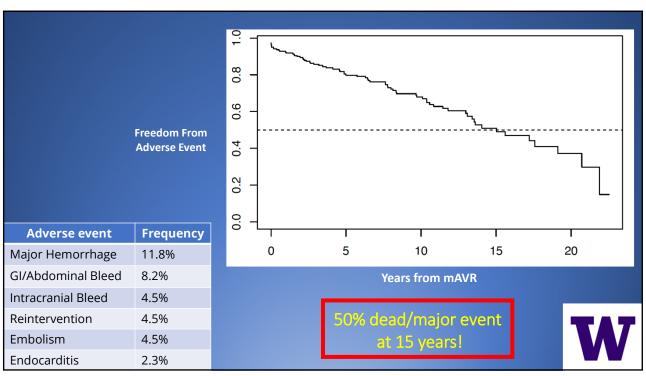

- Transconal Unroofing as described by Najm *et al*.
- Reconstruction of RVOT with autologous pericardial patch




Najm et al. Ann Thorac Surg. 2019



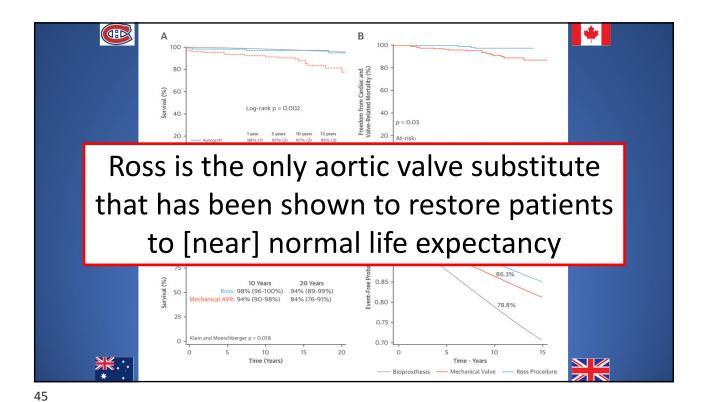

Aortic Valve Replacement-Young Patients • Aortic valve disease common in ACHD population • Often present in 20s/30s • Reluctance to take coumadin • Family planning • Active lifestyle • Promise of TAVR • More biologic valves





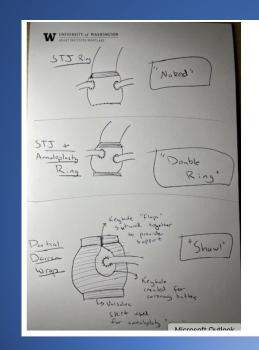
Cost of AVR in Young Patients


- Young and middle aged AVR patients pay a price in life-years or complications regardless of valve type
- Can we do better in this population?



43

The "Living Aortic Valve Complex"


- Better hemodynamics
- Less infection/endocarditis
- No anticoagulation
- Improved survival???

UW Ross Program
First patient in June 2020
Total of 90 patients to date
Excellent clinical and valve outcomes

1% mortality
1% stroke
98% freedom from 2+ AI

ALL Ross patients receive an STJ ring. Purpose: 1) Support autograft distal suture line and 2) Prevent future STJ dilation

AS predominant → "Naked" technique (El-Hamamsy style running implant with addition of STJ Dacron ring)

Al predominant, annulus > 27 mm, aortic annulus > 2 mm greater than pulmonary annulus → "Double Ring" technique (external Dacron ring at annulus and STJ)

Al predominant with dilated (40-50mm) or aneurysmal* (> 50mm) root→ "Shawl" (Valsalva skirt anchoring as external annuloplasty, graft "keyholed" for coronary buttons and reattached to provide "partial" Dacron support)

*very rare

47

Outcomes-UW Ross program

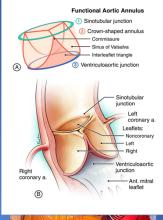
- 5.6% reintervention
 - 1 take-back for bleeding
 - 1 pseudoaneurysm at 6 months
 - 2 balloon dilation of homograft

Table 3. Short- And Long-Term Outcomes after Ross Procedure					
Characteristic	N = 71i				
Short-Term					
Tracheostomy	0 (0%)				
New CVVH/HD	1 (1.4%)				
Permanent Pacemaker Insertion	5 (7.0%)				
Reoperation	2 (2.8%)				
ICU Transfusion	4 (5.6%)				
ICU Length of Stay	3 (+/-2)				
Atrial Fibrillation Requiring Intervention	12 (17%)				
Pneumonia	4 (5.6%)				
Stroke (within 24 hours)	0 (0%)				
TIA	0 (0%)				
Prolonged inotropes (>48 hours)	5 (7.0%)				
Wound infection	1 (1.4%)				
In-hospital Mortality	0 (0%)				
Long-Term					
Mortality During Follow-Up	1 (1.4%)				
Valve-Related Reintervention	0 (0%)				
Any Reintervention	4 (5.6%)				
Pregnancy	2 (2.8%)				
/ n (%); Mean (SD)					
CVVH/HD: Continuous veno-venous hemofiltration/Hemodialysis					
TIA: Transient Ischemic Attack ICU: Intensive Care Unit					
ico. intensive care out					

Lessons Learned

- Delicate between rapid programmatic growth and optimal outcomes
- Dedicated and specialized team essential
 - Congenital and aortic partnership
- "Buy-in" from all involved
 - ICU, outpatient → BP control
- Follow-up essential

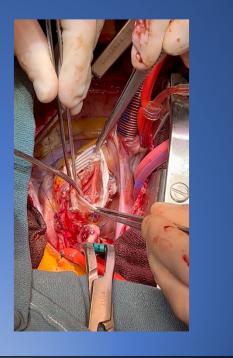
49

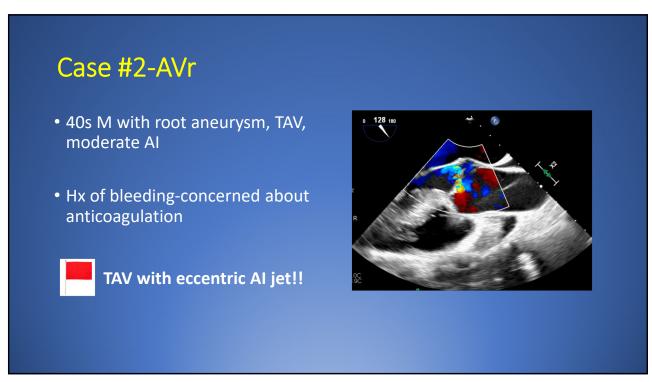

Aortic Valve Repair

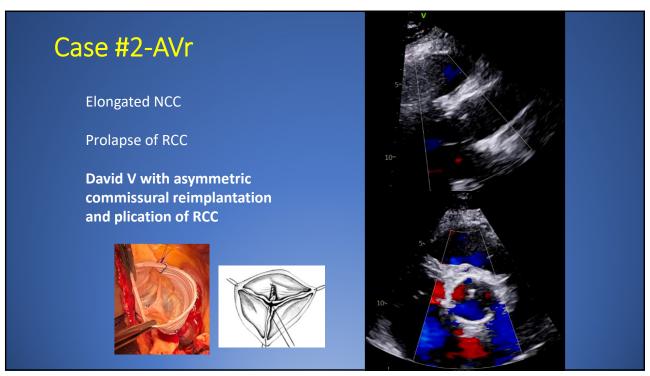
- Reserved for patients with primary AI
- Commonly associated with root aneurysm→ VSRR
- Most BAV AI patients can be repaired
- Rapid area of growth and innovation

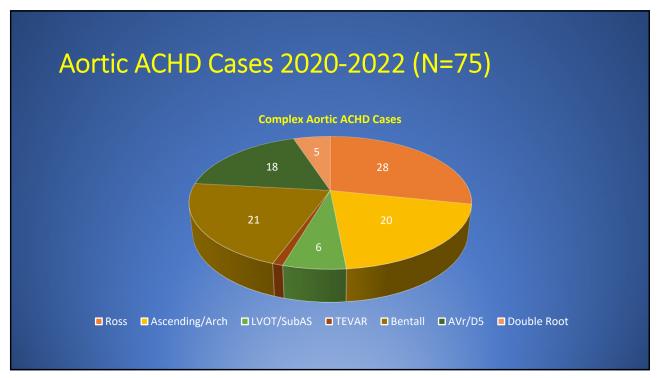
Repair Techniques

- Al comes from pathology within → annulus, STJ, or leaflets
- Repair techniques address:
 - Annuloplasty
 - STJ ring
 - Leaflet repair/plication

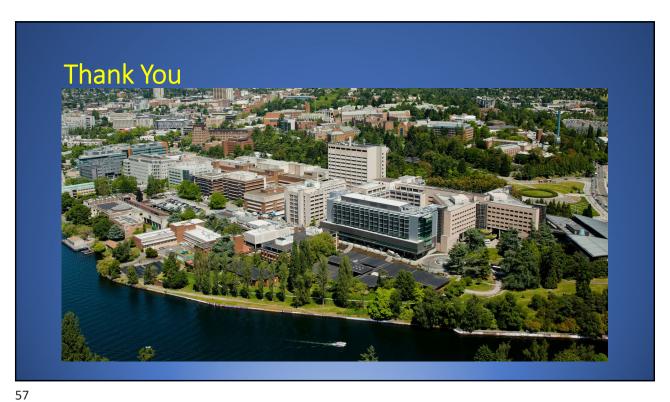





51


Case #1-AVr

- 21 yo M with severe BAV AI and 4.9 cm root
- David V with BAV repair
- Post -> no Al, MG 7 mmHg



Final Thoughts

- ACHD population continues to grow and will need surgical and transcatheter intervention
- Surgery on the aortic valve or ascending aorta is common
- The expertise of a surgeon familiar with complex aortic techniques is critical for the success of an ACHD program
- Partnership between a congenital surgeon and aortic surgeon offers the most comprehensive care for this complex population

