

2013 Recommendation	2015 Focused Update Recommendation	Comment	
Class III: Harm PCI should not be performed in a noninfarct artery at the time of primary PCI in patients with STEMI who are hemodynamically stable (11-13). (Level of Evidence: B)	Class IIb PCI of a noninfarct artery may be considered in selected patients with STEMI and multivessel disease who are hemodynamically stable, either at the time of primary PCI or as a planned staged procedure (11-24). (Level of Evidence: B-R)	Modified recommendation (changed class from "III: Harm" to "IIb" and expanded time frame in which multivessel PCI could be performed).	 III → IIb Ok to treat non-IRA Hemodynamic stable Either at the index procedure or staged.
PCI indicates percutaneous c infarction.	oronary intervention; and STEM	, ST-elevation myocardial	

Г

Recommen Patients Wi Referenced summarize	idations for th STEMI I studies tha d in Online	Revascularization of the Non-Infarct Artery in It support the recommendations are Data Supplement 8.	
COR	LOE	Recommendations	
1	A	 In selected hemodynamically stable patients with STEMI and multivessel disease, after successful primary PCI, staged PCI of a sig- nificant non-infarct artery stenosis is recom- mended to reduce the risk of death or MI.¹⁻⁴ 	
2a	C-EO	 In selected patients with STEMI with com- plex multivessel non-infarct artery disease, after successful primary PCI, elective CABG is reasonable to reduce the risk of cardiac events. 	
2b	B-R	 In selected hemodynamically stable patients with STEMI and low-complexity multivessel disease, PCI of a non-infarct artery stenosis may be considered at the time of primary PCI to reduce cardiac event rates.^{1,25-7} 	
3: Harm	B-R	 In patients with STEMI complicated by car- diogenic shock, routine PCI of a non-infarct artery at the time of primary PCI should not be performed because of the higher risk of death or renal failure.⁸⁻¹⁰ 	

To Sand Book State State

		Control (N=1499)	CEP (N=1501)	
	Age (years)	78.9±7.8	78.9±8.0	
	Female Sex	37.8%	42.0%)
	Society of Thoracic Surgeons score, %	3.4±2.8	3.3±2.7	
	STS score <3%	58.2%	55.6%	
	Surgical Risk (per Heart Team)			
	Extreme/High Risk	30.4%	30.4%	7
	Intermediate Risk	34.2%	33.2%	Operative risk was well-balanced
	Low risk	35.4%	36.3%	
	Native Valve Calcification Severity (site-reported)			
	None/Mild	15.2%	16.2%	
	Moderate	29.5%	29.4%	
	Severe/Extreme	55.3%	54.4%	
	CHA2DS2-VASC score	4.2±1.3	4.2±1.3	
Minneapolis Heart Institute Foundation	GRAND ROUNDS	Kapadia e	et el N Engl I Med	2022: 387:1253-1263

Event at ≤72h / Discharge ITT population	Control (N=1499)	CEP (N=1501)
All-cause Mortality	0.3% (4)	0.5% (8)
Cardiovascular Mortality	0.3% (4)	0.5% (8)
Safety composite (all-cause mortality and stroke)	3.0% (45)	2.7% (41)
CEP Access Site-related Vascular Complication (Major or Minor)	N/A	0.1% (1)
Acute Kidney Injury (stage 2 or 3)	0.5% (7)	0.5% (8)

	Sentinel	TriGuard	CAPTIS	Emblok	Emboliner	PointGuard	ProtEmbo	Embrace
Competitive Landscape (Feb 2022	BSC	Venus	Filterlex	ICS	Emboline	Transverse	Protembis	AorticLab
	M	X	$\tilde{\gamma}$	6	Ñ			
Cerebral embolic protection	Partial	1	1	1	V	1	V	√
Mesh pore size	140	115-145	115-145	125	150	105	60	70
Full-body embolic protection	Х	Х	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark
Capture and removal	Partial	Х	\checkmark	1	\checkmark	Х	Х	1
Protects aortic surface	Х	Х	1	Х	Х	Х	Х	Х
Stable anchoring	X	X	1	X	Х	х	Х	X
Access	6Fr Rt Radial	8Fr Contralateral Femoral	Ipsilateral Same as TAVR	12Fr Contralatera I Femoral	10Fr Contralateral Femoral	10Fr Contralateral Femoral	6Fr Lt Radial	12Fr Contralatera Femoral
Clinical experience	Commercial	Commercial (EU only)	FIH	FIH	FIH	FIH	FIH	FIH
Regulatory status	FDA + CE	CE	x	x	x	x	x	x

73

No financial disclosures
 MinaHealth☆ MINNEAPOLIS HEART INSTITUTE
 VASCULAR &
ENDOVASCULAR SURGERY

Case

• 84M with PAU found during AVR/CABG

AllinaHealth 🕷 MINNEAPOLIS HEART INSTITUTE

VASCULAR & ENDOVASCULAR SURGERY

Presentation and Diagnosis

- Asymptomatic or incidentally found on imaging
- Chest pain, back pain, abdominal pain similar to aortic dissection
- Hypertension common
- CTA gold standard imaging modality
 - Outpouching of the aortic wall

AllinaHealth 🕷 MINNEAPOLIS HEART INSTITUTE

VASCULAR & ENDOVASCULAR SURGERY

77

Management

- Anti-impulse control with goal SBP <120, HR 60-80
 - Beta-blockade first line
- Symptomatic PAU or those associated with IMH should be repaired
- Asymptomatic PAUs with high-risk features should be considered for repair
- · Historically treated with open aortic repair, but there is growing evidence for endovascular repair
 - Open treatment remains important for ascending aorta and aortic arch
 - Endovascular therapies for descending thoracic aorta
 - New technologies for disease near the arch

VASCULAR & ENDOVASCULAR SURGERY

High Risk Imaging Features

- Maximum diameter >13-20mm
- Maximum depth >10mm
- Significant growth
- PAU associated with a saccular aneurysm
- PAU with increasing pleural effusion

(A) Maximal aortic diameter at ulcer site diameter (from ulcer across to opposite aortic wall). (B) Depth of intramural blood pool. (C) Length of initmal defect at ulcer site. (D) Woldh of intramunal blood pool. Adapted from Gifford et al.¹¹ Copyright 2016, with permission from Elsevier, Inc., and from Cho et al.²⁰ Copyright 2004 with permission from the Society for Vascular Surgery.

VASCULAR & ENDOVASCULAR SURGERY

79

Outcomes

- Asymptomatic
 - 6.5% developed symptoms, radiographic progression, or rupture over 10 years
- Open Repair
 - 9-19% perioperative mortality
- Meta-analysis of 310 TEVARs performed for PAU
 - 98.3% success rate, 30d mortality 4.8%, aortic related mortality of 4.1 at 18 months

VASCULAR & ENDOVASCULAR SURGERY

Endovascular Repair

- Thoracic endovascular aortic repair (TEVAR)
- GORE[®] TAG[®] Thoracic Branch Endoprosthesis (TBE)

VASCULAR & ENDOVASCULAR SURGERY

• Intra-operative graft deployment

AllinaHealth 🕷 MINNEAPOLIS HEART INSTITUTE

VASCULAR & ENDOVASCULAR SURGERY

Follow-up Imaging

AllinaHealth 🕷 MINNEAPOLIS HEART INSTITUTE

VASCULAR & ENDOVASCULAR SURGERY

85

Summary

- Uncommon aortic pathology
- Medical management is sufficient for a majority of asymptomatic patients however patients with symptoms or high risks features should be considered for repair
- TEVAR and Branched TEVAR devices provide less invasive options

VASCULAR & ENDOVASCULAR SURGERY

References

- 2022 ACC/AHA Guidelines for the Diagnosis and Management of Aortic Disease
- Nathan DP, Boon W, Lai E, et al. Presentation, complications, and natural history of penetrating atherosclerotic ulcer disease. *J Vasc Surg.* 2012;55:10-15
- Patel HJ, Williams DM, Upchurch Jr GR, et. Al. The challenge of associated intramural hematoma with endovascular repair for penetrating ulcers of the descending thoracic aorta. *J Vasc Surg.* 2010;51:829-835
- D'Annoville T, Ozdemir BA, Alric P, et al. Thoracic endovascular aortic repair for penetrating aortic ulcer: literature review. *Ann Thorac Surg.* 2016; 101:2272-2278

AllinaHealth 🕷 MINNEAPOLIS HEART INSTITUTE

VASCULAR & ENDOVASCULAR SURGERY