MHIF Research Highlights: October 2020

Transcatheter Cardiovascular Therapeutics 2020 – ONLINE NOW!

30+ MHI physicians and MHIF staff participated:

- 2 late-breaking clinical trial sessions
- 2 live cases
- 8 podium presentations
- 20+ virtual poster presentations

SPECIAL CALL OUTS:

- Drs. Bapat, Cavalcante, Shakrullah and Sorajja performed hybrid, open-transcatheter mitral valve-in-valve procedure
- Drs. Brilakis and Burke performed percutaneous coronary intervention of a chronic total occlusion (CTO)
- MHIF and Dr. Garcia announced first outcomes from the North American COVID-19 ST-Segment Elevation Myocardial Infarction (NACMI) Registry

MHIF FEATURED STUDIES:

COVID PACT

Comparing anticoagulation therapy in COVID+ patients in the ICU; Dr. Brandon Wiley

CONTACT:

Christine Majeski - Christine.majeski@allina.com

Proact Xa

Anticoagulation therapy with On-X aortic valve; Dr. Benjamin Sun

CONTACT:

Alyssa Taffe - Alyssa.taffe@allina.com

Thanks to our MHI physician partners who are helping us complete tasks to get patients enrolled in research studies as appropriate during COVID-19!

We appreciate our partnership with you!

MHIF FEATURED STUDY: COVID PACT

OPEN AND ENROLLING:

EPIC message: Research MHIF Patient Referral

CONDITION: COVID-19

PI: Brandon Wiley, MD

RESEARCH CONTACT:

Christine Majeski christine.majeski@allina.com | 612-863-3546

SPONSOR:
The TIMI Study
Group

DESCRIPTION:

The purpose of this trial is comparing antiplatelet and anticoagulation strategies in critically ill COVID19 patients...

Patients will be randomized to 1:1 to these treatment arms and then further randomized into anti-platelet vs no antiplatelet treatments and followed for thrombotic complications.

CRITERIA LIST/ QUALIFICATIONS:

Inclusion:

- 18 or older
- Acute infection with severe acute respiratory syndrome coronarvirus 2 (SARS-CoV2)
- Currently admitted to an intensive care unit (ICU)

Exclusion:

- Ongoing (>48 hours) or planned full-dose (therapeutic) anticoagulation for any indication
- Ongoing or planned treatment with dual antiplatelet therapy
- Contraindication to antithrombotic therapy or high risk of bleeding
- History of heparin-induced thrombocytopenia
- Ischemic stroke within the past 2 weeks

Disclosures: None **HOPE DISCOVERD HERE** **Control of the Control of the Contr

2

5 of 41

/

Why is Point-of-Care Ultrasound Important?

The Traditional Bedside Clinical Exam is Difficult

- Jugular veins identified in 72-94% patients¹
 - 50% accuracy for high vs low CVP
- Correct timing of cardiac murmur 66%²
 - Cause of murmur 26%³
 - Agreement among Cardiologists for +S3 is ~30%
- Study of 442 consecutive patients
 - Only 40% diagnosed appropriately by history and physical⁴

¹McGee Am Heart J 1998 ²Vukanovic-Criley Arch Intern Med 200 ³March, Mayo Clinic Proc. 2005 ⁴Paley, Arch Intern Med. 2011

9

Why is Point-of-Care Ultrasound Important? POCUS Improves the Clinical Exam

- POCUS reduces missed major CV exam findings 43% -> 21%
- Students+POCUS outperformed cardiologists
 - Etiology of systolic murmur 93% vs 62%
 - Detection of diastolic murmur 75% vs 16%
- Multicenter ICU study with 1,215 POCUS studies
 - Change in diagnosis 24.9%, change management 44.0%

Spencer, JACC. 2001 Bernier-Jean JICM 2015

12

8 of 41

9 of 41

10 of 41

Components of Lung Ultrasound

- Pleura
 - Morphology
 - Motion ("sliding")
 - Effusion
- Lung Parenchyma
 - Aeration pattern
- Diaphragm
 - Motion

Diagnose

- Pulmonary Edema
- Volume Status
- PCWP
- PNA/ARDS
- Pneumothorax
- Pleural Effusion
- Diaphragmatic Paralysis

25

26

Lung Ultrasound Key Findings

Assess pleural line

- Normal "lung sliding"
- Abnormal: no "lung sliding", irregular/thickened

Assess parenchyma

- Normal: nothing present ("A-Lines")
- Abnormal: B-Lines, Consolidation

Assess pleural space

- Normal: nothing present
- Abnormal: fluid

Pneumothorax
Absence of "Lung Sliding" and B-Lines

Pneumothorax

Normal

Normal

Parietal pleural layer without interface with visceral layer (no B-lines)

Assess pleural line

• Normal "lung sliding"

• Abnormal: no "lung sliding", irregular/thickened

Assess parenchyma

• Normal: nothing present ("A-Lines")

• Abnormal: B-Lines, Consolidation

Assess pleural space

• Normal: nothing present

• Abnormal: fluid

B-Line Pattern Increased **Lung Density Fibrosis** Inflammation **B-Lines** Mallamaci et al. JACC:IMG 2010

19 of 41

21 of 41

Consolidation

Navyadatit
SS-1Property of the property of th

42

44

46

48

LUS Excellent Diagnostic Test in ED for Cardiogenic Pulmonary Edema

• SIMEU study of 1,005 pts presenting to ED with dyspnea

• 6-Zone anterior lung ultrasound

CARDIOGENIC vs NON-CARDIOGENIC etiology

	Sens.	Spec.	PPV	NPV
Clinical	85.3%	90%	88%	87%
LUS ≥2 zones (bilateral) 3 ≥ B-Lines	90.5%	93.5%	92.3%	92%
LUS + Clinical	97%	97.4%	97%	97.4%
CXR	69.5%	82.1%	76.8%	75.9%

Pivetta et al. SIMEU Group, 2015. Chest

Data Supports use of LUS for Diagnosis of Acute Pathology

- Diagnosis of Heart Failure in ED (B-Line pattern)
 - 85.3% sens., 92.7% spec. (LR+ 7.4, LR-0.16)
 - CXR 56.9% sens. 89.2% spec
 - BNP (<100pg/ml) LR- 0.14
- Diagnosis of pneumothorax
 - 90.9% sens., 98.2% spec.
 - CXR 50.2% sens., 99.4% spec.
- Diagnosis of PNA
 - 80-90% sens., 70-90% spec.

Martindale JL et al. 2016 Acad Em Med Llamas-Alvarez AM et al. 2017 Chest Alrajhi et al. 2012 Chest

51

Detection and prognostic value of pulmonary congestion by lung ultrasound in ambulatory heart failure patients[†] Elke Platz^{1,2*}, Eldrin F. Lewis^{2,3}, Hajime Uno^{2,4}, Julie Peck⁵, Emanuele Pivetta^{6,7}, Allison A. Merz⁸, Dorothea Hempel⁹, Christina Wilson¹⁰, Sarah E. Frasure^{1,2}, Pardeep S. Jhund¹¹, Susan Cheng^{2,3}, and Scott D. Solomon^{2,3} Increased B-Lines correlate with worse prognosis in ambulatory **HF** patients Primary outcome 1.00 -■ Crackles ■≥3 B-lines 0.75 0.50 40% 0.25 0.00 20% Time to first event (days) Number at risk Tertile 1 Tertile 2 Tertile 3 10% Event Tertile 1 Tertile 2 Adjusted HR 4.08 (2.09-10.31) combined all cause Portable Vscan US device, 8 zones mortality and hospitalization at 180 days

Increased Burden of B-Lines Identifies HF Patients at High Risk for HF Readmission or Death Author Year n Events, n HR (95% CI) Weight (%) Acute Heart Failure (pre-discharge) 2015 24.12 (3.15, 184.55) >15 B-Lines (28 zones) 2015 18 5.80 (2.10, 16.30) 40.38 Coiro 60 Cogliati 2016 149 3.10 (1.20, 8.02) 43.52 Subtotal $(I_2 = 40.3\%, P = 0.187)$ 5.55 (2.24, 13.80) 100.00 Chronic Heart Failure 3.00 (1.40, 6.70) ≥ 3 B-Lines (5-8 zones) Platz 2016 185 3.78 (1.88, 7.63) 55.54 Subtotal $(I_2 = 0.0\%, P = 0.666)$ 3.41 (2.02, 5.75) 100.00 NOTE: Weights are from random effects analysis 20 30 Platz et al. EJHF 2017

Integration of LUS into Echocardiogram

Outpatient ECHO Indication: possible CHF?

Final Impressions

- 1. Severe mitral valve regurgitation with mild anterior leaflet override and a posteriorly direct jet. Apical displacement of the leaflets and annular dilation suggest a functional etiology.
- Mitral regurgitation ERO (PISA) 0.53 cm².
- 3. Mitral regurgitant volume (PISÁ) 73 ml.
- 4. Moderate-severe left ventricular enlargement. Estimated ejection fraction 45-50%. Mild global hypokinesis.
- Normal right ventricular size with mildly reduced systolic function.
- Estimated right ventricular systolic pressure 56 mmHg (systolic blood pressure 122 mmHg).
- Dilated inferior vena cava with reduced inspiratory collapse (<50%).
- 8. Lung ultrasound performed. Evidence of B-lines suggestive of pulmonary edema.

Encourage the early detection of heart failure – before rales, weight gain

55

30 of 41

56

29 31 of 41

60

Summary

• Holistic POCUS Bedside Exam

• Guide diagnosis/therapeutics at bedside

• Lung Ultrasound

• Etiology of dyspnea

• Monitor fluid status

• Prognostic value in ambulatory/hospitalized heart failure

• Novel applications

• LUS+Stress Echo

• Etiology of dyspnea (HFpEF)

• LV filling pressure, VHD

• Prognosis in stress echo

37 of 41

70

38 of 41

