Allina Health Kvascular Grand Rounds

ABBOTT NORTHWESTERN HOSPITAL

| Minneapolis | Heart | Institute

Minneapolis Heart Institute® at Abbott Northwestern Hospital

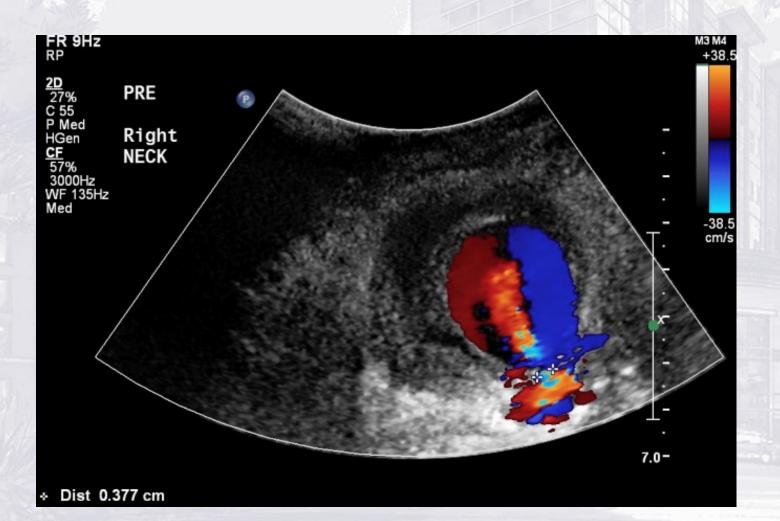
Really? Is that still a thing?

| Minneapolis | Heart | Institute Allina Health 👬 ABBOTT NORTHWESTERN HOSPITAL

| Minneapolis | Heart | Institute

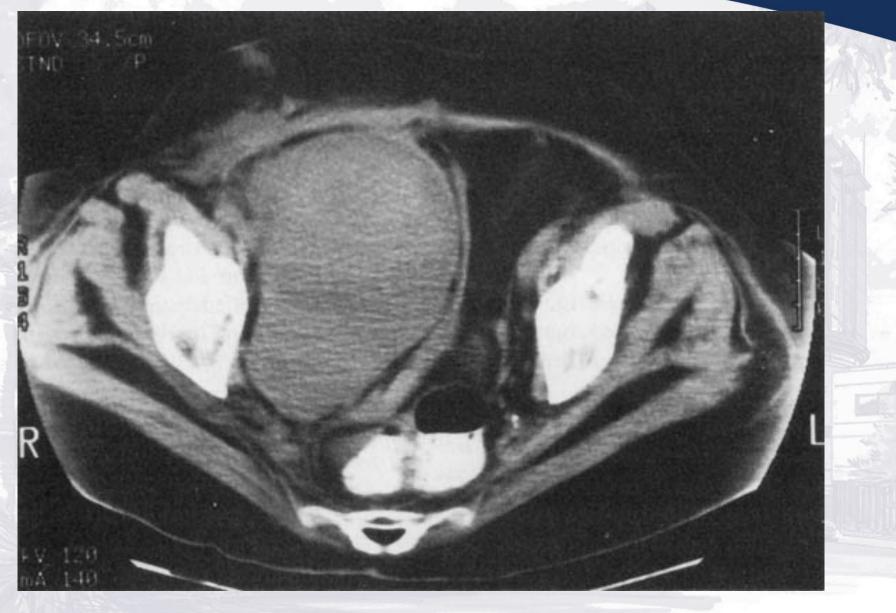
Allina Health 👬 ABBOTT NORTHWESTERN HOSPITAL

the second second



Allina Health 🖮 ABBOTT NORTHWESTERN HOSPITAL

s Allina Health ABBOTT NORTHWESTERN HOSPITAL



Allina Health ABBOTT NORTHWESTERN HOSPITAL

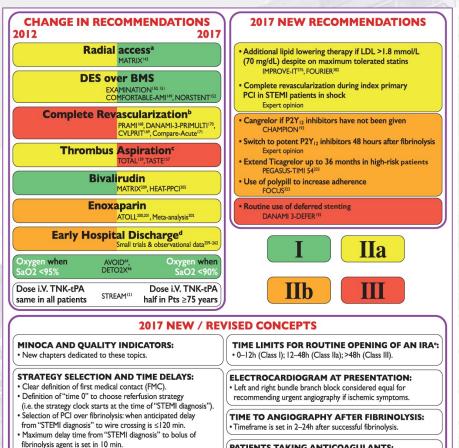
Allina Health ABBOTT NORTHWESTERN HOSPITAL

Quality Initiatives to Prevent and Manage Major Femoral Access-Site Bleeding

This Tip of the Month summarizes effective strategies for the prevention and management of major femoral bleeding following percutaneous coronary intervention (PCI).

Read the Tip

For more information on quality improvement in the cath lab, <u>check out our QI</u> <u>toolkit</u>, including modules on procedural quality, facility and environmental issues, and care coordination.

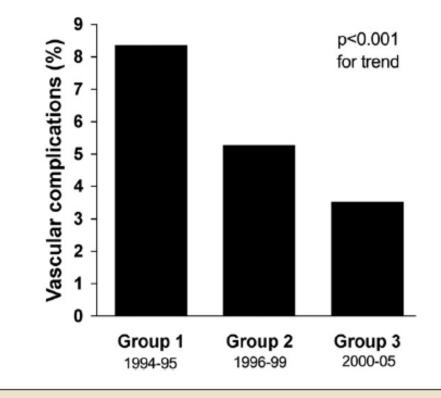

Allina Health ABBOTT NORTHWESTERN HOSPITAL

SCAI Quality Measures for Prevention of Major Femoral Bleeding: 1st recommendation:

Use radial instead of femoral access for PCI, if possible, especially in patients at high risk of bleeding, including ACS. In the **RIVAL trial, transradial PCI was associated** with a 64% reduction in access-site bleeding (ACUITY trial definition) compared with transfemoral PCI in patients with both non-STEMI and STEMI.

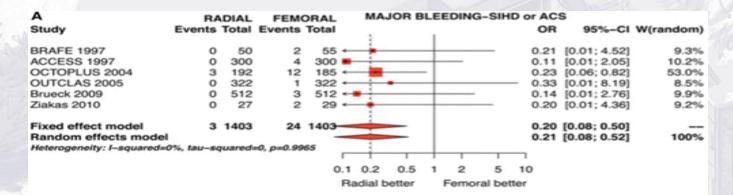
European Society of Cardiology

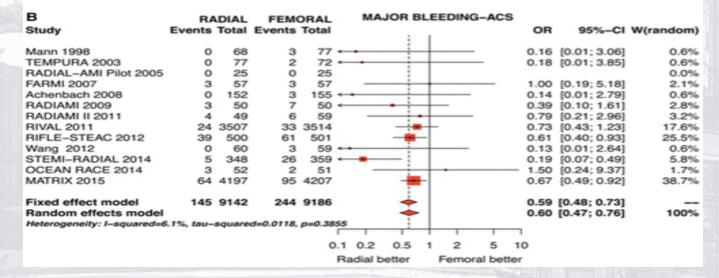
Eur Heart J, Volume 39, Issue 2, 07 January 2018, Pages 119-177, <u>https://doi.org/10.1093/eurheartj/ehx393</u> The content of this slide may be subject to copyright: please see the slide notes for details.


"Door-to-Ballon" term eliminated from guidelines.

• Acute and chronic management presented.

Bleeding complications have decreased but are still bad!


JACC CI 2008;1:202-9

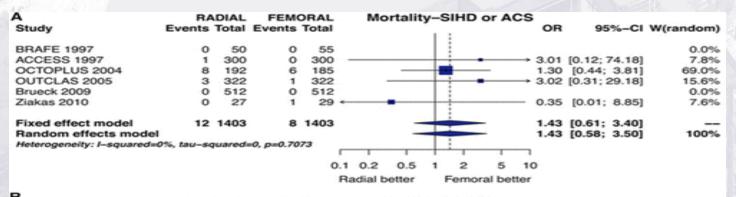

Figure 1. Changing Incidence of Major Femoral Bleeding Complications From 1994 to 2005

The incidence of major femoral bleeding declined significantly from the earliest (8.4%) to the contemporary time period (3.5%).

Allina Health 🕉 ABBOTT NORTHWESTERN HOSPITAL

Peter J. Mason. Circulation: Cardiovascular Interventions. An Update on Radial Artery Access and Best Practices for Transradial Coronary Angiography and Intervention in Acute Coronary Syndrome: A Scientific Statement From the American Heart Association, Volume: 11, Issue: 9, DOI: (10.1161/HCV.000000000000035) 14 of 89

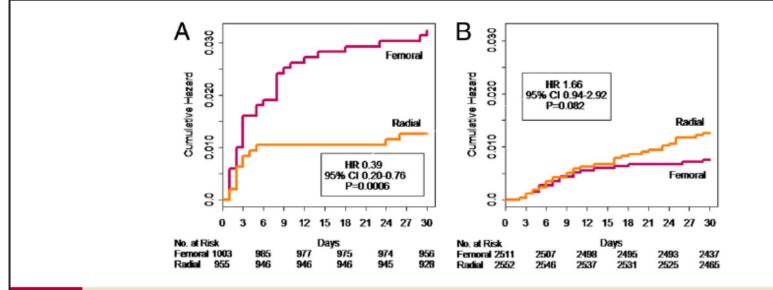
© 2018 American Heart Association, Inc.


	RA	DIAL	FEMO	DRAL	MAJOR VASCULAR			
Study	Events	Total	Events	Total	- I	OR	95%-CI	W(random)
BRAFE 1997	3	50	6	55		0.52	[0.12; 2.21]	6.3%
ACCESS 1997	7	300	6	300	ž	1.17	[0.39; 3.53]	10.8%
Mann 1998	0	68	3	77	+ ÷ ÷ – –	0.16	[0.01; 3.06]	1.5%
OCTOPLUS 2004	3	192	12	185	← <u>₩</u> <u>}</u>	0.23	[0.06; 0.82]	8.0%
OUTCLAS 2005	0	322	1	322		- 0.33	[0.01; 8.19]	1.3%
FARMI 2007	8	57	20	57		0.30	[0.12; 0.76]	15.4%
Brueck 2009	3	512	19	512	• <u> </u>	0.15	[0.04; 0.52]	8.8%
Ziakas 2010	0	27	3	29	(<u></u>	0.14	[0.01; 2.80]	1.4%
RIVAL 2011	12	3507	35	3514		0.34	[0.18; 0.66]	30.4%
RIFLE-STEACS 2012	2	500	3	501		0.67	[0.11; 4.01]	4.1%
Wang 2012	0	60	1	59		0.32	[0.01; 8.07]	1.3%
MATRIX 2015	4	4197	15	4207		0.27	[0.09; 0.80]	10.8%
Fixed effect model	42	9792	124	9818	-	0.33	[0.23; 0.47]	
Random effects model					 	0.35	[0.24; 0.50]	100%
Heterogeneity: I-squared=0	%, tau-se	uared	0, p=0.65	66	4			
				0	1 0.2 0.5 1 2 5	10		
					Radial better Femoral bet	er		

Peter J. Mason. Circulation: Cardiovascular Interventions. An Update on Radial Artery Access and Best Practices for Transradial Coronary Angiography and Intervention in Acute Coronary Syndrome: A Scientific Statement From the American Heart Association, Volume: 11, Issue: 9, DOI: (10.1161/HCV.00000000000035) 15 of 89

© 2018 American Heart Association, Inc.

в	B/	DIAL	FEM	ORAL		MO	RTAL	ITY-ACS				
Study	Events	Total	Events	Total			-			OR	95%-C	W(random)
Mann 1998	0	68	0	77								0.0%
TEMPURA 2003	4	77	7	72	_				0	.51	[0.14; 1.82	2.7%
RADIAL-AMI Pilot 2005	0	25	1	25	-				- 0	.32	[0.01; 8.25	0.4%
FARMI 2007	3	57	3	57					- 1	.00	[0.19; 5.18	1.6%
Achenbach 2008	0	152	0	155								0.0%
RADIAMI 2009	1	50	1	50					→ 1	.00	[0.06; 16.44]	0.6%
RADIAMI II 2011	0	49	0	59								0.0%
RIVAL 2011	44	3507	51	3514				_	0	.86	[0.57: 1.29]	26.5%
RIFLE-STEAC 2012	26	500	46	501		_	÷		0	.54	[0.33; 0.89	17.6%
Wang 2012	0	60	1	59	<u> </u>				- 0	.32	[0.01; 8.07	0.4%
STEMI-RADIAL 2014	8	348	11	359					0	.74	[0.30; 1.87	5.1%
OCEAN RACE 2014	4	52	5	51	1.1		-		0	.77	[0.19; 3.03	2.3%
MATRIX 2015	66	4197	91	4207			٠		0	.72	[0.52; 0.99	42.7%
Fixed effect model	156	9142	217	9186			4		0	.71	[0.58: 0.88]	
Random effects model							-		0	.72	[0.58; 0.88]	100%
Heterogeneity: I-squared=0	%, tau-se	quared	0, p=0.96	49							•	
							_					
					.1 0.	2 0.	5 1	2	5 10			
					Radi	al bette	r	Femoral	better			


Peter J. Mason. Circulation: Cardiovascular Interventions. An Update on Radial Artery Access and Best Practices for Transradial Coronary Angiography and Intervention in Acute Coronary Syndrome: A Scientific Statement From the American Heart Association, Volume: 11, Issue: 9, DOI: (10.1161/HCV.000000000000035) 16 of 89

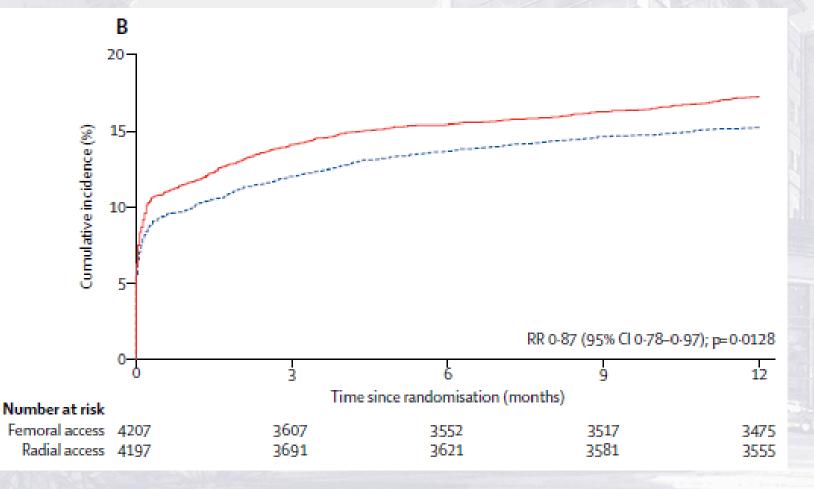
© 2018 American Heart Association, Inc.

Allina Health 🐞 ABBOTT NORTHWESTERN HOSPITAL

Mortality is lower with radial access in STEMI

Figure 2 Death in Patients With STEMI and NSTEACS

For death, there was a significant interaction between access site allocation (radial or femoral) and acute coronary syndrome type (STEMI or NSTEACS) with an interaction p value of 0.001. In patients with STEMI (A), radial artery access reduced the mortality compared with femoral artery access, whereas in patients with NSTEACS (B), there was no significant difference in mortality between radial and femoral artery access. Abbreviations as in Figure 1.


Rival Trial; Mehta et al J AM Coll Cardiol 2012;60:2490-9

17 of 89

Allina Health 🐞 ABBOTT NORTHWESTERN HOSPITAL

Matrix: improved outcomes with radial

18 of 89

Lancet 2018;392:835-848

Most common rationalization for using femoral access

" It's better for high risk or complex interventions"

Central Illustration: Bleeding Outcomes For LM PCI- Radial versus Femoral access

1

ESTERN

(A) Major Bleeding

(B) Access Site Bleeding

	TRA	×	TFA			Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Yea	r	M-H, Rand	iom, 95% Cl	
Hsueh et al.	0	116	1	15	7.9%	0.04 [0.00, 1.07] 2008	3 4	•		
DeMaria et al.	3	244	14	221	52.6%	0.18 [0.05, 0.65] 2015	5			
Kinnaird et al.	2	4292	20	2611	39.5%	0.06 [0.01, 0.26] 2018	3 —	-		
Total (95% CI)		4652		2847	100.0%	0.11 [0.04, 0.26]		-		
Total events	5		35							
Heterogeneity: Tau ² =	0.00; Chi ^s	= 1.64	, df = 2 (F	= 0.44	(); $I^2 = 0\%$		0.01	0.1	1 10	100
Test for overall effect:	Z = 4.83 (P < 0.0	0001)				0.01	0.1 Favours TRA	1 10 Favours TFA	100

(C) Any Bleeding

	TRA	2	TEA	 		Odds Ratio			Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	Year		M-H, Rand	tom, 95% CI	
Yang et al.	2	353	13	468	8.9%	0.20 [0.04, 0.89]	2010			a colori calenteria a alte	
Gao et al.	29	508	34	297	50.6%	0.47 [0.28, 0.79]	2014				
Almudarra et al.	5	1602	10	3266	16.2%	1.02 [0.35, 2.99]	2014			+	
Chung et al.	4	161	27	322	16.4%	0.28 [0.10, 0.81]	2015				
Gili et al.	2	177	7	177	7.9%	0.28 (0.06, 1.36)	2017			t-	
Total (95% CI)		2801		4530	100.0%	0.43 [0.27, 0.69]			+		
Total events	42		91								
Heterogeneity: Tau ² =	0.04; Chi ²	= 4.57	df = 4 (F)	= 0.33	3); $I^2 = 12\%$			10.04		1 1	
Test for overall effect:			· · · · · · · · · · · · · · · · · · ·					0.01	0.1 Favours TRA	1 10 Favours TFA	100

Allina Health 並 ABBOTT NORTHWESTERN HOSPITAL

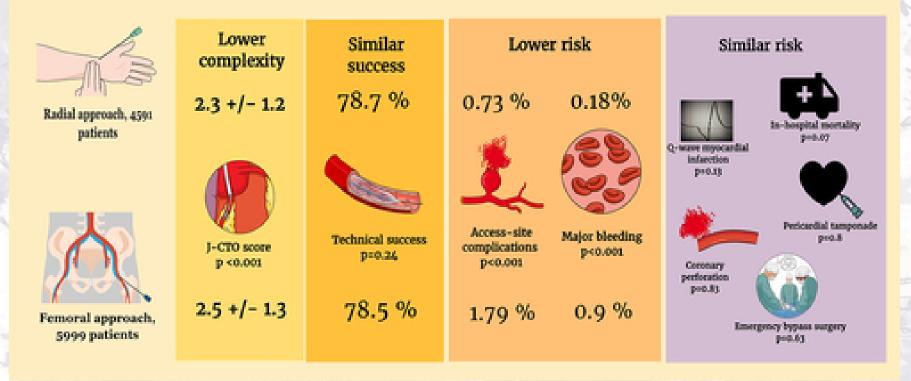
LWILEY_

In-Hospital Outcomes For LM PCI

(A) In-Hospital Mortality

	TRA		TEA			Odds Ratio			Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-H, Rand	lom, 95% Cl	
Ziakas et al.	0	27	2	53	2.4%	0.37 [0.02, 8.08]	2004				
Hsueh et al.	1	116	2	15	3.6%	0.06 [0.00, 0.67]	2008	•	-		
Tomassini et al.	0	27	3	22	2.4%	0.10 [0.00, 2.07]	2013	•	-		
Gao et al.	1	508	0	297	2.2%	1.76 [0.07, 43.31]	2014			· ·	
DeMaria et al.	5	244	11	221	16.4%	0.40 [0.14, 1.17]	2015			+	
Kinnaird et al.	105	4292	107	2611	73.1%	0.59 [0.45, 0.77]	2018				
Total (95% CI)		5214		3219	100.0%	0.49 [0.31, 0.79]			+		
Total events	112		125								
Heterogeneity: Tau ² =	0.06; Chi ²	= 5.59	df = 5 (F	P = 0.35	j; l ² = 11%	,		0.01	0.1	1 10	100
Test for overall effect:	Z = 2.92 (P = 0.0	04)					0.01		Favors TFA	100

(B) In-Hospital MI


	TRA		TEA			Odds Ratio			Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Y	(ear		M-H, Random, 95% Cl	
Ziakas et al.	2	27	1	53	2.1%	4.16 [0.36, 48.08] 2	2004			-
Hsueh et al.	7	116	2	15	4.4%	0.42 [0.08, 2.23] 2	800			
Yang et al.	10	353	7	468	13.0%	1.92 [0.72, 5.10] 2	010			
Tomassini et al.	1	27	0	22	1.2%	2.55 [0.10, 65.66] 2	013			_
Gao et al.	50	508	17	297	38.1%	1.80 [1.02, 3.18] 2	2014			
Gili et al.	10	177	7	177	12.7%	1.45 [0.54, 3.91] 2	017			
Kinnaird et al.	22	4292	15	2611	28.6%	0.89 [0.46, 1.72] 2	018			
Total (95% CI)		5500		3643	100.0%	1.38 [0.97, 1.97]			•	
Total events	102		49							
Heterogeneity: Tau ² = 0	0.00; Chi ²	= 5.86	df = 6 (F	P = 0.44); $I^2 = 0\%$			0.01	0.1 1 10	100
Test for overall effect: 2	z = 1.81 (I	P = 0.0	7)					0.01	0.1 1 10 Favors TRA Favors TFA	100

(C) In- Hospital TVR

	TRA	۰.	TEA			Odds Ratio			Odds Rat	io	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-H, Random,	95% CI	
Ziakas et al.	0	27	0	53		Not estimable	2004				
Hsueh et al.	1	116	1	15	12.0%	0.12 [0.01, 2.06]	2008	4			
Yang et al.	4	353	9	468	68.4%	0.58 [0.18, 1.91]	2010				
Tomassini et al.	0	27	1	22	9.1%	0.26 [0.01, 6.72]	2013				
Gao et al.	0	508	2	297	10.4%	0.12 [0.01, 2.43]	2014	•	-	-	
Total (95% CI)		1031		855	100.0%	0.38 [0.14, 1.01]					
Total events	5		13								
Heterogeneity: Tau ² =	0.00; Chi ²	= 1.77	, df = 3 (F	P = 0.62	2); I ² = 0%			0.01	0,1 1	10	100
Test for overall effect: 2	Z = 1.93 (P = 0.0	5)					0.01	Favors TRA Fav	10 ors TFA	100

Radial vs. Femoral Approach in Chronic Total Occlusion Percutaneous Coronary Intervention Meta-analysis of 9 observational studies (10,590 patients)

Michael Megaly. Circulation: Cardiovascular Interventions. Radial Versus Femoral Access in Chronic Total Occlusion Percutaneous Coronary Intervention, Volume: 12, Issue: 6, DOI: (10.1161/CIRCINTERVENTIONS.118.007778) **In Favor of Femoral Access**

Radial Vs Femoral Access for Cath/PCI

Mario Goessl, MD PhD

Director, Transcatheter Valve Therapies LAAO Program IC Fellowships

DISCLOSURES

• I HAVE NEVER LOST A DEBATE ... EVER

Pre Debate

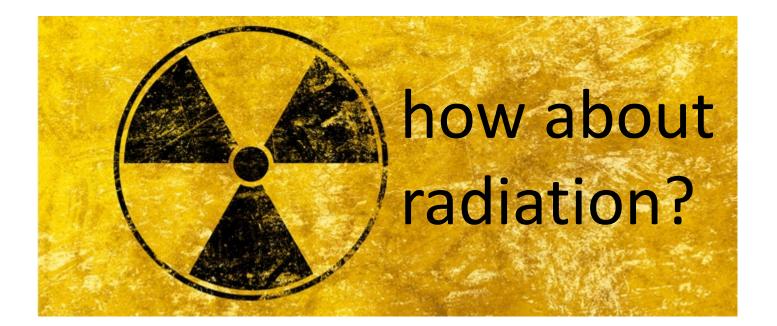
Post Debate

Why Go Radial ... earlier mobilization?

Journal of Cardiovascular Nursing Vol. 00, No. 0, pp. 00–00 Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

Is It Safe to Mobilize Patients Very Early After Transfemoral Coronary Procedures? (SAMOVAR) A Randomized Clinical Trial

Marianne Wetendorff Nørgaard, PhD, RN; Jane Færch, MSc, RN; Francis R. Joshi, MD, PhD, FRCP; Dan E. Høfsten, MD, PhD; Thomas Engstrøm, MD, PhD, DMSc; Henning Kelbæk, MD, DMSc


Journal of Cardiovascular Nursing 2021, ahead of print $_{26 \text{ of } 89}$

SAMOVAR

- Immediate vs 2h mobilization
- No difference
- Of 2027 patients (IM, 1010; BR, 1017), 40% underwent PCI. The primary outcome* was recorded in 0.7% patients randomized to IM versus 0.5% in BR (P = .58). There was no difference in the incidence of small hematoma, whereas persistent oozing was seen slightly more often after IM compared with BR (12% vs 9%, P = .04).

*The primary end point was a composite of greater than 5 cm of groinhematoma, retroperitoneal hematoma, pseudoaneurysm, and/or bleeding requiring transfusion.

Why Go Radial ...

Comparative Study > Eur Heart J. 2008 Jan;29(1):63-70. doi: 10.1093/eurheartj/ehm508. Epub 2007 Nov 13.

Comparison of operator radiation exposure with optimized radiation protection devices during coronary angiograms and ad hoc percutaneous coronary interventions by radial and femoral routes

Camille Brasselet¹, Thierry Blanpain, Sophie Tassan-Mangina, Alain Deschildre, Sébastien Duval, Fabien Vitry, Nathalie Gaillot-Petit, Jean Paul Clément, Damien Metz

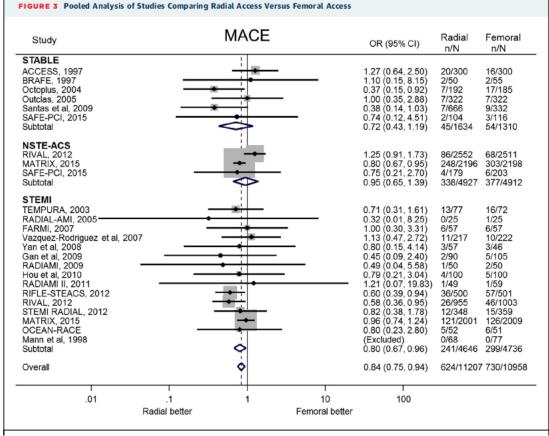
Radial Radiation

Radiation exposing radial route where whe

ly higher using the ute for both CAs and croSv vs. 13.0 [1.0nicroSv vs. 41.0 [2.0radiation exposure lial route when nd CAs followed by

Why Go Radial ... the mortality myth?

Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease A Meta-Analysis of Randomized Trials


J Am Coll Cardiol Intv 2016;9:1419–34

RESULTS

Twenty-four studies **enrolling 22,843 participants** were included. Compared with femoral access, radial access was associated with a significantly **lower risk for all-cause mortality** (odds ratio [OR]: 0.71; 95% confidence interval [CI]:0.59 to 0.87; p=0.001, **number needed to treat to benefit [NNTB] =160**), **major adverse cardiovascular events** (OR: 0.84; 95% CI: 0.75 to 0.94; p=0.002; **NNTB=99**), **major bleeding** (OR: 0.53; 95% CI: 0.42 to 0.65; p <0.001; **NNTB=103**), and **major vascular complications** (OR: 0.23; 95% CI: 0.16 to 0.35; p < 0.001; **NNTB=117**).

Learning curve $\dots \sim 50$ PCI necessary

FIGURE 2 Pooled Analysis of Studies	Comparing Radial Access Versus Femoral Ac	cess		
Study	All-cause death	OR (95% CI)	Radial n/N	Femoral n/N
STABLE ACCESS, 1997 Octoplus, 2004 Outclas, 2005 Santas et al, 2009 SAFE-PCI, 2015 Mann et al, 1996 BRAFE, 1997 Subtotal		 3.01 (0.12, 74.18 0.64 (0.11, 3.87) 1.50 (0.25, 9.07) 0.25 (0.02, 2.75) 0.37 (0.01, 9.14) (Excluded) (Excluded) 0.78 (0.29, 2.14) 	2/192 3/322 1/666 0/104 0/76 0/50	0/300 3/185 2/322 2/332 1/116 0/76 0/55 8/1386
NSTE-ACS RIVAL, 2012 SAFE-PCI, 2015 MATRIX, 2015 Subtotal		1.67 (0.94, 2.95) 0.23 (0.01, 4.77) 0.50 (0.28, 0.88) 0.79 (0.27, 2.34)	32/2552 0/195 18/2196 50/4943	19/2511 2/224 36/2198 57/4933
STEMI TEMPURA, 2003 RADIAL-AMI, 2005 FARMI, 2007 Vazquez-Rodriguez et al, 2007 Yan et al, 2008 RADIAMI, 2009 Gan et al, 2019 Hou et al, 2010 Wang et al, 2010 Wang et al, 2012 RIFLE-STEACS, 2012 STEMI RADIAL, 2012 RIVAL, 2012 MATRIX, 2015 OCEAN RACE, 2015 Mann et al, 1998 RADIAMI II, 2011 Subtotal Overall		$\begin{array}{c} 0.51 & (0.14, 1.82) \\ 0.32 & (0.01, 8.25) \\ 1.00 & (0.19, 5.18) \\ 0.91 & (0.34, 2.39) \\ 0.80 & (0.15, 4.14) \\ 0.33 & (0.01, 8.21) \\ 0.77 & (0.13, 4.73) \\ 0.79 & (0.21, 3.04) \\ 0.54 & (0.33, 0.89) \\ 0.63 & (0.26, 1.53) \\ 0.39 & (0.20, 0.75) \\ 0.87 & (0.59, 1.29) \\ 0.31 & (0.03, 3.12) \\ (Excluded) \\ (Excluded) \\ 0.66 & (0.52, 0.84) \\ 0.71 & (0.59, 0.87) \\ \end{array}$		7/72 1/25 3/57 9/222 3/46 1/50 3/105 5/100 1/59 46/501 13/359 32/1003 55/2009 3/51 0/77 0/59 182/4795 247/11114
.01 R	.1 1 10 adial better Femoral better	100		

For RIVAL data needed to be extracted, corresponding author etc

J Am Coll Cardiol Intv 2016;9:1419–34

RIVAL (the original)

Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial

Sanjit S Jolly, Salim Yusuf, John Cairns, Kari Niemelä, Denis Xavier, Petr Widimsky, Andrzej Budaj, Matti Niemelä, Vicent Valentin, Basil S Lewis, Alvaro Avezum, Philippe Gabriel Steg, Sunil V Rao, Peggy Gao, Rizwan Afzal, Campbell D Joyner, Susan Chrolavicius, Shamir R Mehta, for the RIVAL trial group* MHIF Cardiovascular Grand Rounds

RIVAL (the original)

Interpretation

Radial and femoral approaches are both safe and effective for PCI. However, the lower rate of <u>local vascular complications</u> may be a reason to use the radial approach.

MHIF Cardiovascular Grand Rounds

RIVAL (the treatment effect analysis)

Journal of the American College of Cardiology © 2012 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 60, No. 24, 2012 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2012.07.050

Effects of Radial Versus Femoral Artery Access in Patients With Acute Coronary Syndromes With or Without ST-Segment Elevation

Shamir R. Mehta, MD, MSC,* Sanjit S. Jolly, MD, MSC,* John Cairns, MD,† Kari Niemela, MD, PHD,‡ Sunil V. Rao, MD,§ Asim N. Cheema, MD, PHD, Philippe Gabriel Steg, MD,¶ Warren J. Cantor, MD,# Vladimír Džavík, MD,** Andrzej Budaj, MD, PHD,†† Michael Rokoss, MD,* Vicent Valentin, MD,‡‡ Peggy Gao, MSC,* Salim Yusuf, MBBS, DPHIL,* for the RIVAL Investigators

Hamilton, Toronto, Newmarket, Ontario, Vancouver, British Columbia, Canada; Tampere, Finland; Durham, North Carolina; Paris, France; Warsaw, Poland; and Valencia, Spain

Conclusions

In patients with <u>STEMI</u>, radial artery access reduced the primary outcome and mortality. <u>No</u> <u>such benefit</u> was observed in patients with <u>NSTEACS</u>. The radial approach may be preferred in STEMI patients when the operator has considerable radial experience.

... if a reduction in bleeding-related complications was associated with lower mortality, it might **most likely be detected in the STEMI group of patients**.

... higher rate of PCIs (90%) compared with NSTEACS patients (50% to 60%), exposing them to a higher frequency of access site complications.

... more potent initial and subsequent antiplatelet and antithrombotic therapies (as well as fibrinolytic therapy) ... the risk-adjusted rate of bleeding (particularly access-site bleeding) is higher, <u>making the association between bleeding and</u> <u>mortality more readily detectable in this population</u>

STEMI subgroup:

30-day mortality was significantly lower with radial access (1.3%vs 3.2%), <u>which cannot be explained by the very</u> <u>low rates of bleeding at 0.84% (radial access) vs 0.91%</u> (femoral access). <u>The majority of deaths occurred in patients who had</u>

neither a major bleed nor an access site complication.

Because randomization did not stratify patients by STEMI and non-STEMI, any comparison in the patients with STEMI is a subgroup analysis and prone to potential differences between access groups that may confound the relationship.

JAMA Cardiology | Original Investigation

Safety and Efficacy of Femoral Access vs Radial Access in ST-Segment Elevation Myocardial Infarction The SAFARI-STEMI Randomized Clinical Trial

Michel Le May, MD; George Wells, PhD; Derek So, MD; Aun Yeong Chong, MD; Alexander Dick, MD; Michael Froeschl, MD; Christopher Glover, MD; Benjamin Hibbert, MD; Jean-Francois Marquis, MD; Melissa Blondeau, BSc; Christina Osborne, BSc; Andrea MacDougall, MD; Malek Kass, MD; Vernon Paddock, MD; Ata Quraishi, MBBS; Marino Labinaz, MD

JAMA Cardiol. 2020;5(2):126-134

SAFARI-STEMI

- CONCLUSIONS AND RELEVANCE <u>No significant differences</u> were found for survival or other clinical end points at 30 days after the use of radial access vs femoral access in patients with STEMI referred for primary PCI. However, small absolute differences in end points cannot be definitively refuted given the premature termination of the trial.
- Kapadia: best clinical practice vs real world may be the difference?
 > do we need to teach better femoral access?

SAFARI-STEMI – Updated Meta-Analysis

eFigure 2. Updated Meta-analysis

	Transradial		Transfemoral		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	1 M-H, Fixed, 95% CI
RADIAL-AMI 2005	0	25	1	25	0.8%	0.33 [0.01, 7.81]]
Yan 2008	3	57	3	46	1.8%	0.81 [0.17, 3.81]]
Hou 2010	4	100	5	100	2.8%	0.80 [0.22, 2.89]	1
STEMI-Radial 2012	8	348	11	359	6.0%	0.75 [0.31, 1.84]	, <u> </u>
RIVAL 2012	12	955	32	1003	17.4%	0.39 [0.20, 0.76]	a —•—
RIFLE-STEACS 2012	26	500	46	501	25.6%	0.57 [0.36, 0.90]	g —•
MATRIX 2015	48	2001	55	2009	30.6%	0.88 [0.60, 1.28]	g —
OCEAN RACE 2014	1	52	3	51	1.7%	0.33 [0.04, 3.04]]
Vasquez-Rodriguez 2009	8	217	9	222	5.0%	0.91 [0.36, 2.31]]
SAFARI 2019	17	1136	15	1156	8.3%	1.15 [0.58, 2.30]	ı -
Total (95% CI)		5391		5472	100.0%	0.71 [0.57, 0.89]	1 🔶
Total events	127		180				
Heterogeneity: Chi ² = 8.08, df = 9 (P = 0.53); l ² = 0% Test for overall effect: Z = 2.98 (P = 0.003)							
							0.01 0.1 1 10 100 Favours transradial Favours transfemoral

The primary outcome of 30-day all-cause mortality was not significant between radial access and femoral access groups. As illustrated, the comparisons between the 2 groups are consistently nonsignificant across all subgroups. Squares represent mean values, with error bars representing 95% CIs. RR indicates relative risk; BMI, body mass index calculated as weight in kilograms divided by height in meters squared. To convert creatinine clearance to milliliters per second, multiply by 0.0167.

JAMA Cardiol. 2020;5(2):126-134

Conclusions

- Stable CAD ?
- NSTEMI ?

- Radial STEMI appeared to be the one MANTRA
 > debunked by SAFARI
- PLUS: what if we do ultrasound-guided access? REBIRTH

Burke ... Time to go home!

Thank you!

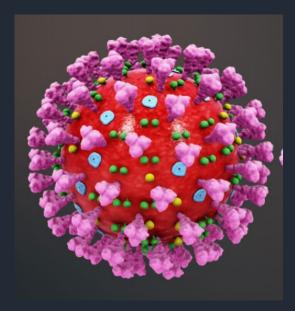
MATRIX

Radial versus femoral access in patients with acute coronary $\rightarrow \mathcal{W} \cong \mathcal{W}$ syndromes undergoing invasive management: a randomised multicentre trial

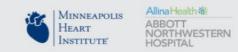
Marco Valgimigli, Andrea Gagnor, Paolo Calabró, Enrico Frigoli, Sergio Leonardi, Tiziana Zaro, Paolo Rubartelli, Carlo Briguori, Giuseppe Andò, Alessandra Repetto, Ugo Limbruno, Bernardo Cortese, Paolo Sganzerla, Alessandro Lupi, Mario Galli, Salvatore Colangelo, Salvatore Ierna, Arturo Ausiello, Patrizia Presbitero, Gennaro Sardella, Ferdinando Varbella, Giovanni Esposito, Andrea Santarelli, Simone Tresoldi, Marco Nazzaro, Antonio Zingarelli, Nicoletta de Cesare, Stefano Rigattieri, Paolo Tosi, Cataldo Palmieri, Salvatore Brugaletta, Sunil V Rao, Dik Heg, Martina Rothenbühler, Pascal Vranckx, Peter Jüni, for the MATRIX Investigators^{*}

Lancet 2015; 385: 2465-76

Findings


We randomly assigned 8404 patients with acute coronary syndrome, with or without ST-segment elevation, to radial (4197) or femoral (4207) access for coronary angiography and percutaneous coronary intervention. 369 (8 • 8%) patients with radial access had <u>major adverse cardiovascular events</u>, compared with 429 (10 • 3%) patients with femoral access (rate ratio [RR] 0 • 85, 95% Cl 0 • 74–0 • 99; p=0 • 0307), <u>non-significant</u> at α of 0 • 025. 410 (9 • 8%) patients with radial access had <u>net adverse clinical events</u> compared with 486 (11 • 7%) patients with femoral access (0 • 83, 95% Cl 0 • 73–0 • 96; p=0 • 0092). The difference was driven by **BARC major bleeding** unrelated to coronary artery bypass graft surgery (1 • 6% vs 2 • 3%, RR 0 • 67, 95% Cl 0 • 49–0 • 92; p=0 • 013) and all-cause mortality (1 • 6% vs 2 • 2%, RR 0 • 72, 95% Cl 0 • 53–0 • 99; p=0 • 045).

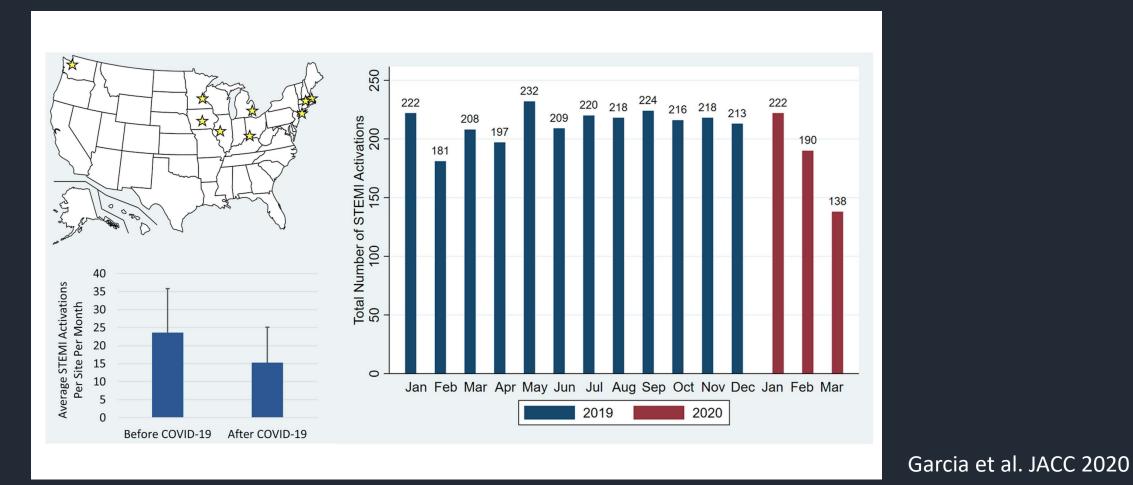
Interpretation In patients with acute coronary syndrome undergoing invasive management, radial as compared with femoral access reduces <u>net adverse clinical events, through a reduction in major bleeding and all-</u> <u>cause mortality.</u>


How on earth does mortality improve when we go radial?

- Different stents >>> No
- Different procedure time >>> No
- Same proceduralists
- Is it all about the bleeding?
- Is it really true?

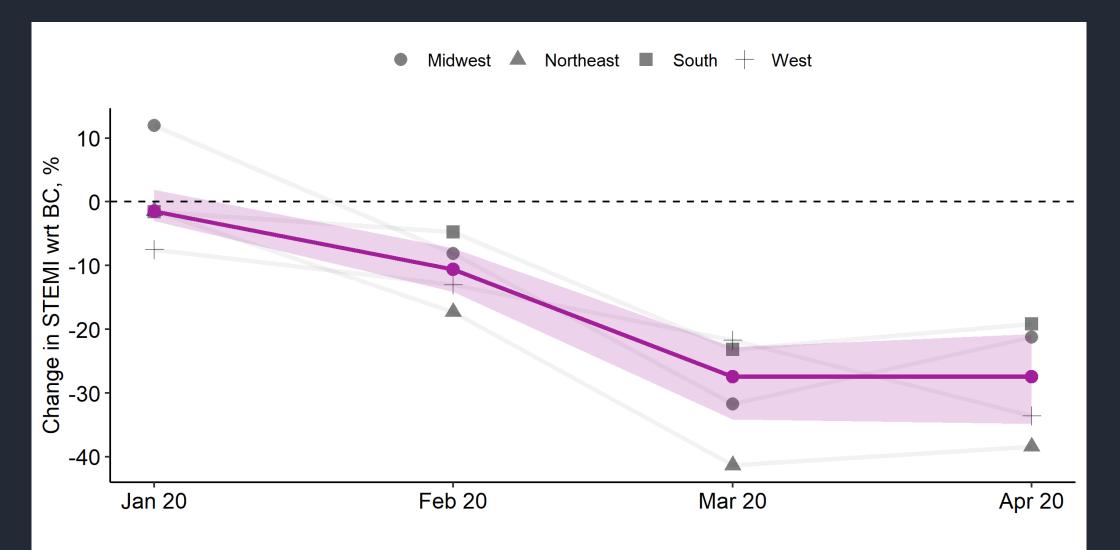
The North American COVID-19 STEMI Registry

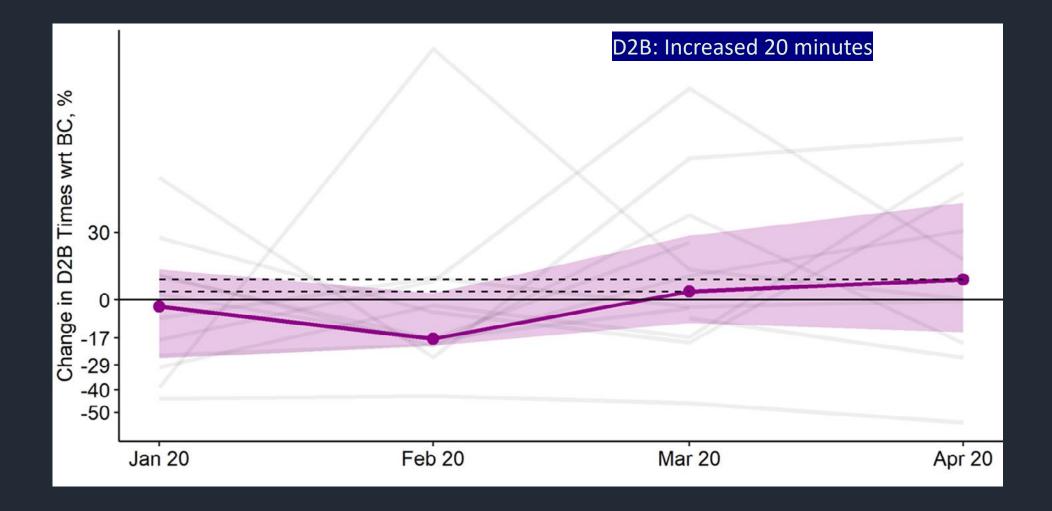
Santiago Garcia, MD On Behalf of NACMI Investigators


Outline

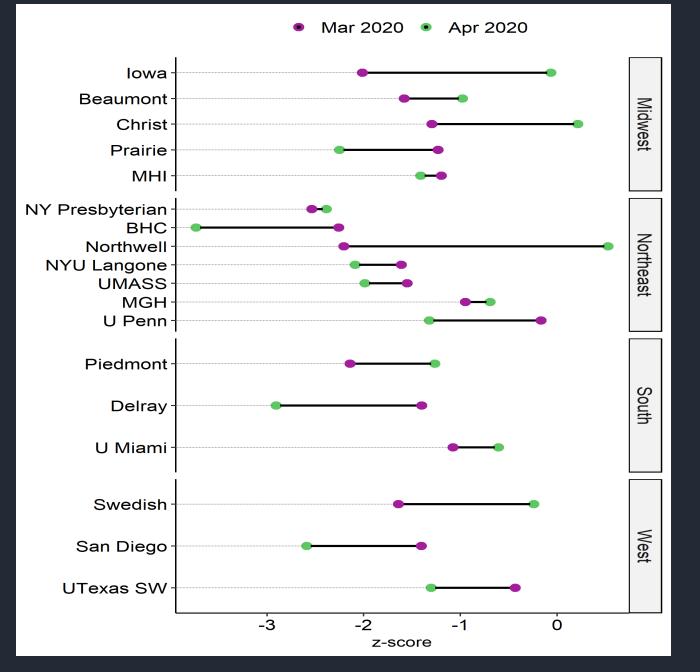
- 1. STEMI and other CV emergencies during COVID-19 pandemic
- 2. Late Presentations/OHCA data
- 3. NACMI- Main results and subgroups

Where did the heart attacks go?

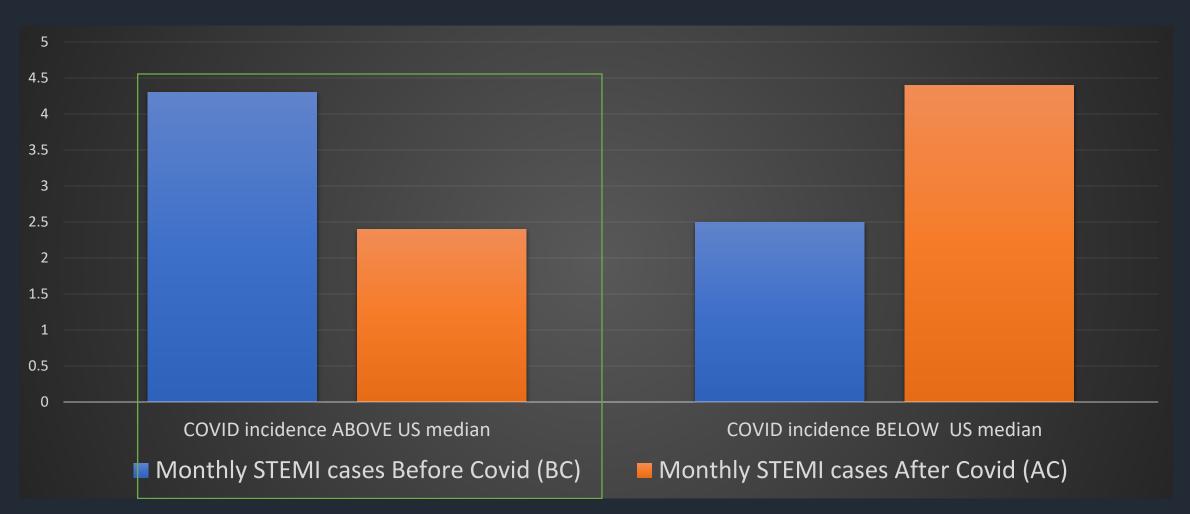



Where did the heart attacks go?

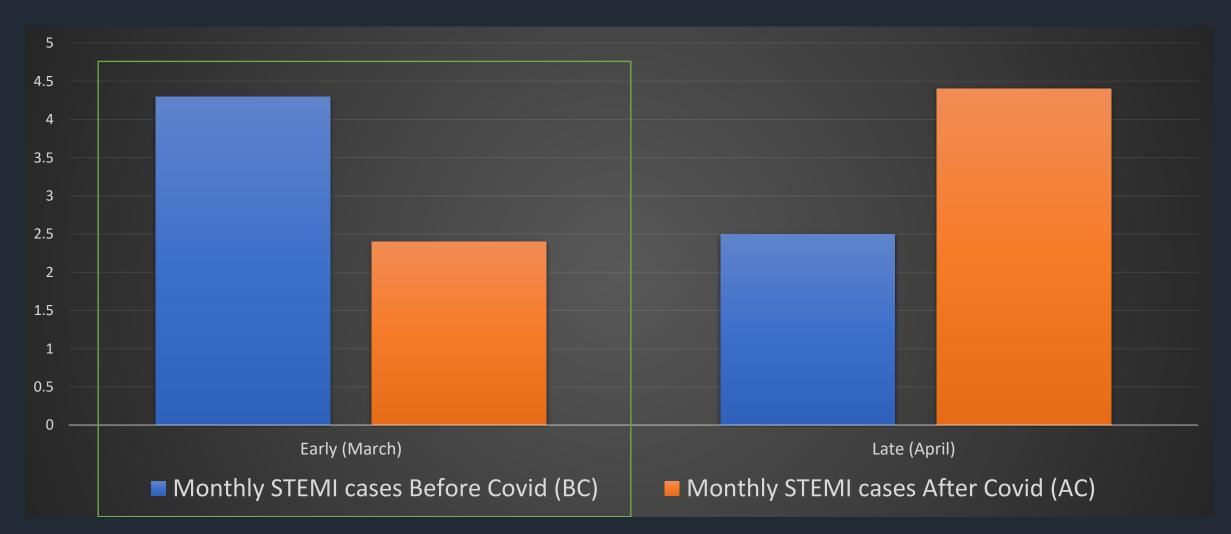
Expanded analysis 17 STEMI Program, 4 US regions



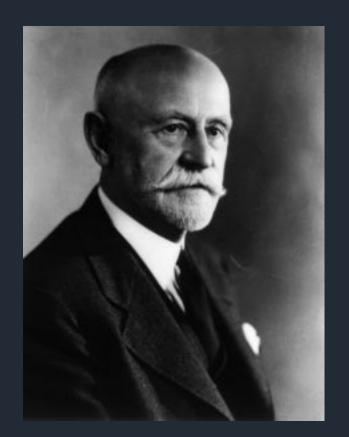
Where did the heart attacks go?


Expanded analysis 17 STEMI Program, 4 US regions

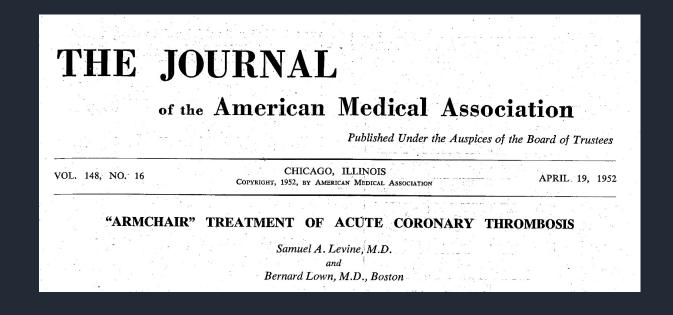
Garcia et al. CCI 2020



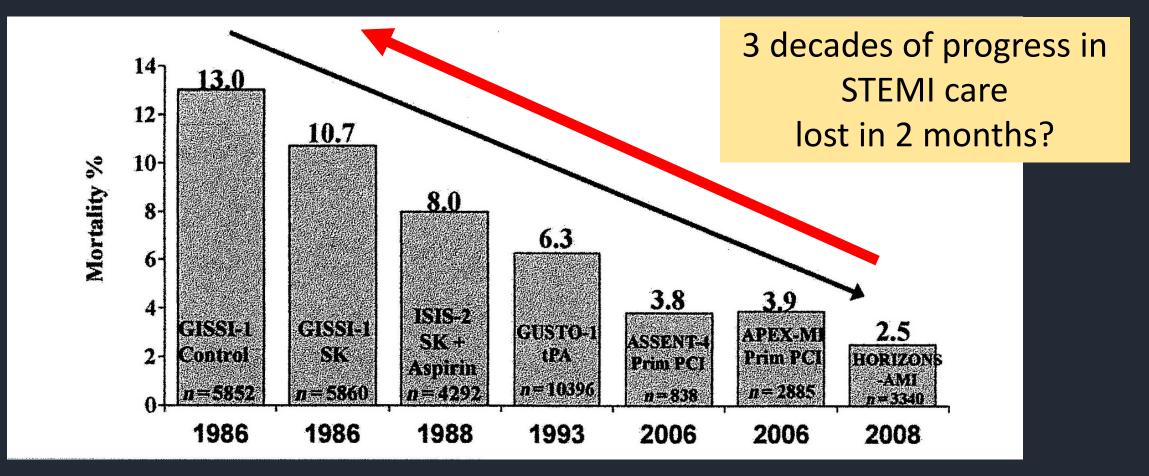
STEMI Volume Comparison by COVID Incidence



AC periods includes only Early phase of the pandemic March – April 2020

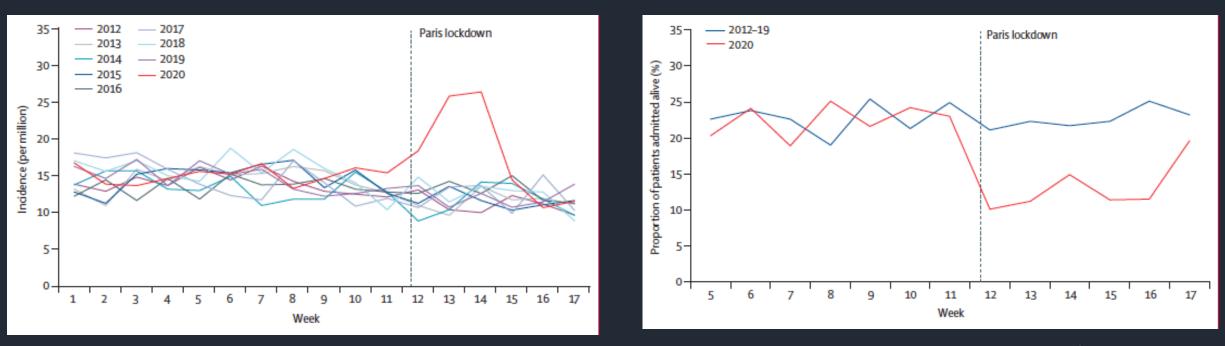

STEMI Volume Comparison by Initiation of stay at home orders

James B Herrick (1861–1954) Certain clinical features of sudden obstruction of the coronary arteries. JAMA 1912; 59:2015-20



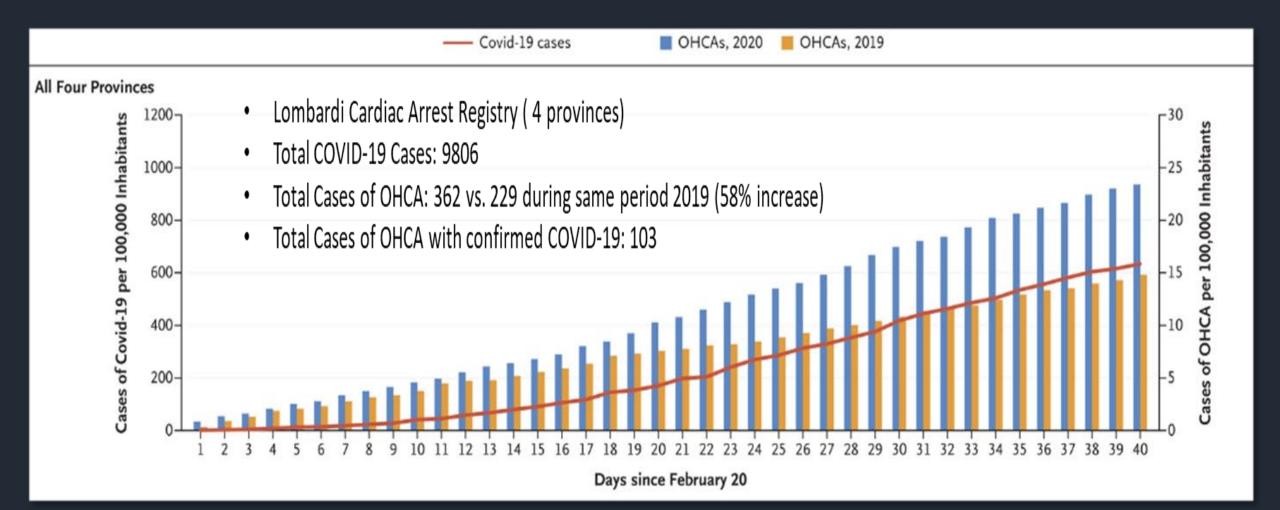
"The importance of absolute rest in bed for several days is clear."

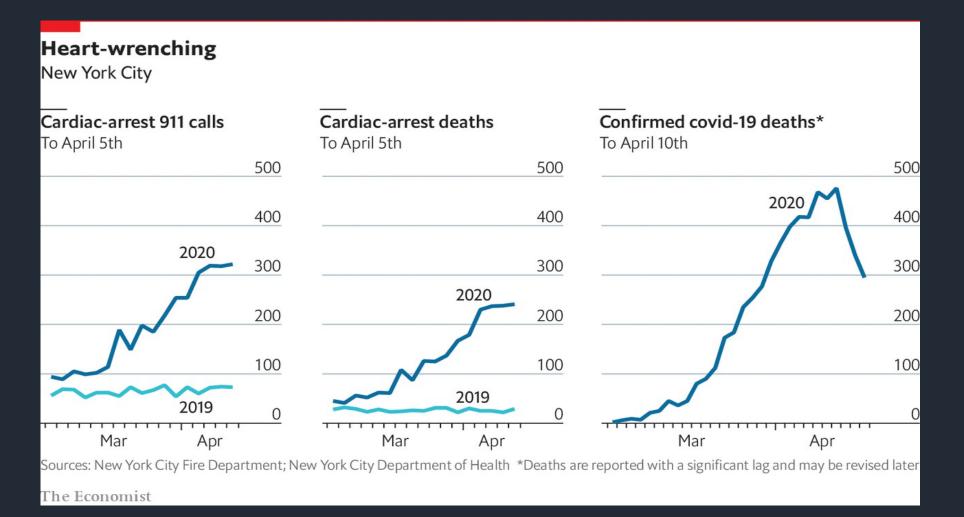
"The prevailing view is that patients with cardiac disease are expected to die in bed. If fatalities occur out of bed, the physician is held culpable"


Myocardial mortality rates in the early era of coronary reperfusion

From Ven de Werf. Eur Heart J 2014;35:2510-15.

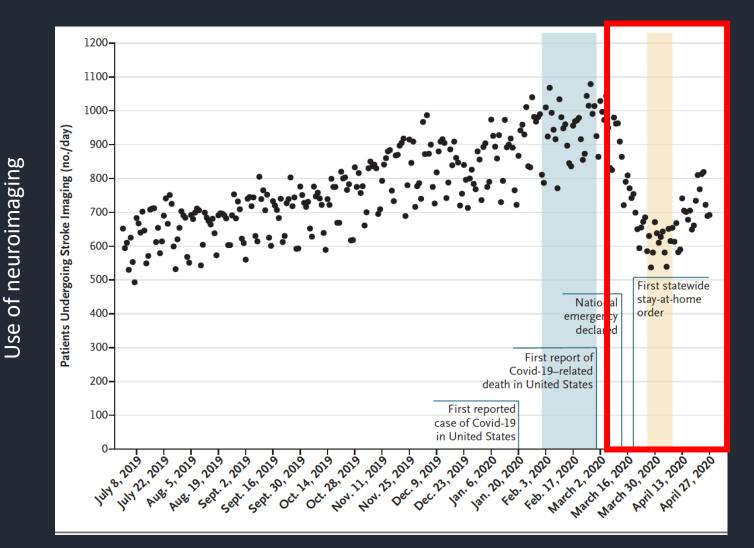
White Cardiovascular Grand Point Monore did the heart attacks go? *To the morgue*


Out-of-hospital cardiac arrest during the COVID-19 pandemic in Paris, France: a population-based, observational study

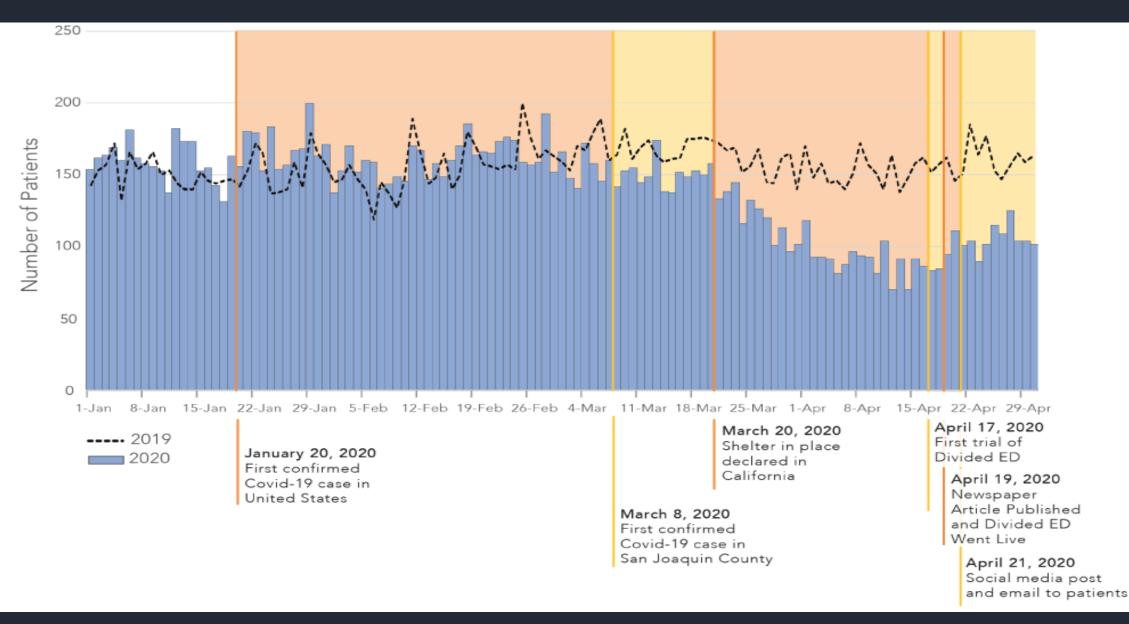

Marijon et al. Lancet 2020

MHIF Cardiovascular Grand Rounds

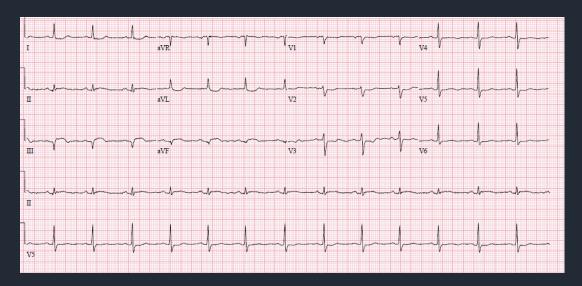
58% Increase in out of hospital cardiac arrest in Italy


Cardiac Arrest 911 Calls in NYC

The Economist. graphic-detail/2020/04/13/


MHIF Cardiovascular Grand Rounds

Other CV Emergencies: Where did the strokes go?


NEJM May 2020

Emergency Department Volume by Day and Timeline of Key Events

Late Presentations

- 67 yo female
- Did not present to ED due to fear of contracting COVID
- 14 hours later Q-waves inferiorly
- Failed PCI

Alsidawi S et al. JACC Case reports.

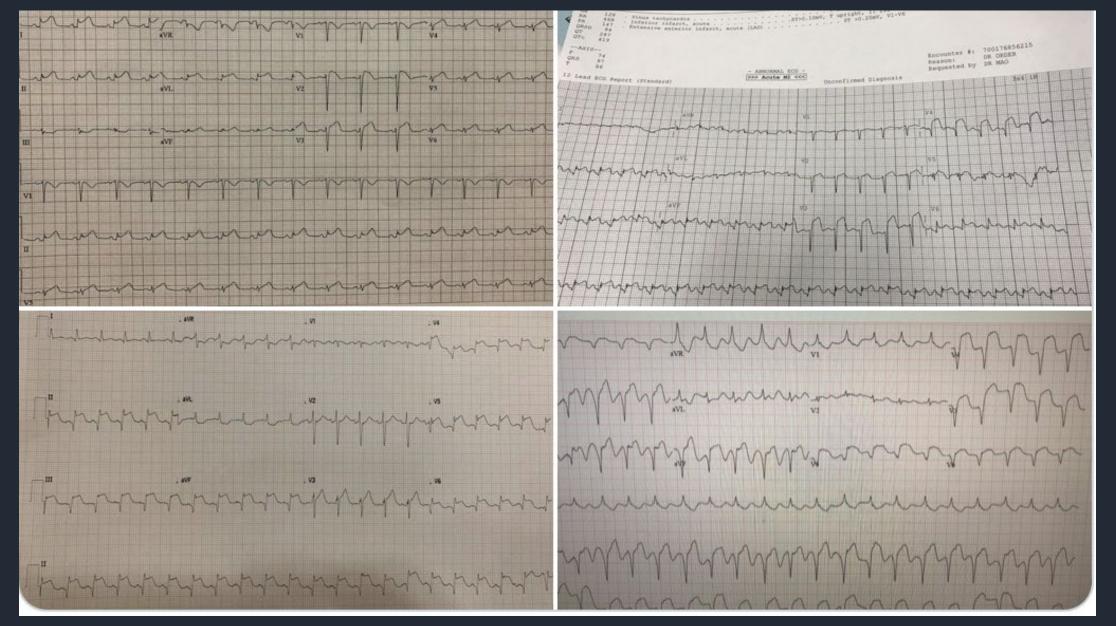
Late Presentations 5-days later

Alsidawi S et al. JACC Case reports.

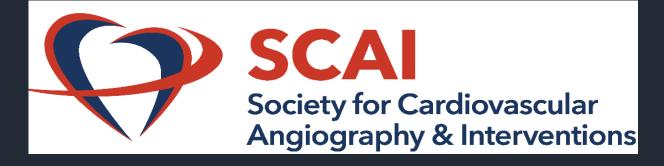
MHI Case #2

Anterior MI, fear of contracting COVID, presented 1 week later in heart failure Elected palliative care, died from free wall rupture

When COVID and Heart attacks Coexist

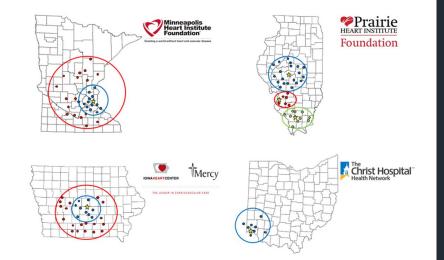

- Patients with cardiovascular disease have increased risk of mortality with COVID-19
- 15-28% of COVID+ patients admitted to the hospital have elevated Troponin
- Some advocated for a shift to pharmacological reperfusion
- Dismal prognosis (72% mortality in NYC)

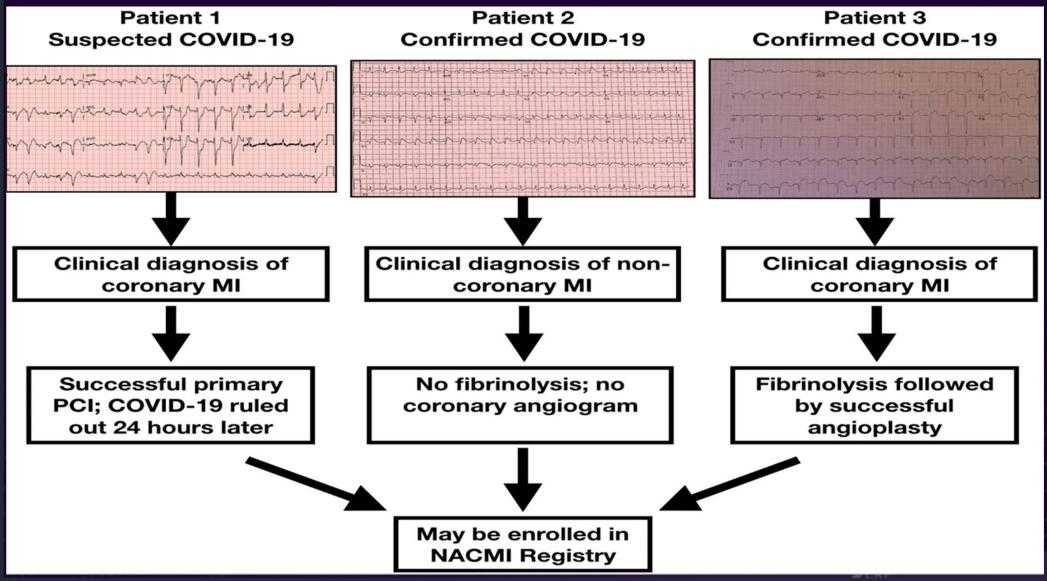
Futility ??

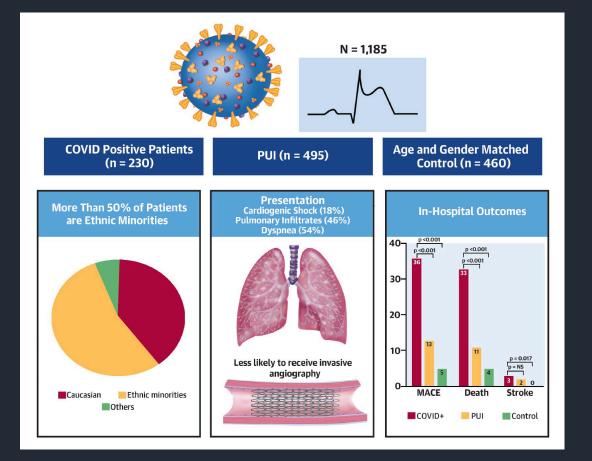

STEMI Series IN COVID 19 – Literature review

	New York Series , n =18	Lombardy Series, n= 28	London Series, n= 39	French series, n=11	International, n=78
Population	6 Hospitals in New York, USA, n of 18	All PCI capable hospitals (?n) in Lombardy Italy, n of 28	115 Consecutive STEMI patients at Barts Heart centre (39 positive for COVID-19)	83 Consecutive STEMI patients at University of Hospital of Nancy, France, (11 positive for COVID 19)	Lithuania, Italy, Spain and Iraq –
Time Frame	March 2020	Feb 20 th – March 30 th , 2020	March 01 to May 20, 2020	Feb 26 th – May20, 2020	Feb1st to April 15 th , 2020
Demographics	Median age 63, 83% Male, 67% intubated	Mean age 68, 71% Male	Mean age of 62, 85% Male, 13% intubated	Mean age of 63.6, 64% male	median age of 65, 63% me n
COVID 19 Diagnosis	N/A	Reverse transcriptase PCR	Reverse transcriptase PCR OR symptoms + chest imaging	Reverse transcriptase PCR OR symptoms + chest imaging	Confirmed - positive result on PCR testing of a nasopharyngeal sample.
Chest pain as initial symptom	6/18 (33%) had chest pain	22/28 (79%)	11/39 had cardiac arrest as initial presentation	4/11 had cadiac arrest as initial presentation	18% were intubated
Strength of the study	First paper to describe STEMI		Looked at thrombus grade for Grade 5 thrombus, TIMI flow, Blush score 3 interventionalists blinded to study looked at images	2 angiographers scored angiograms for thrombotic MINOCA independently	Multi-center
LVEF	9/17 (53%) had abnormal LVEF	LVEF Mean of 42%	LVEF median of 43%	8/11 had LVEF of < 45%	Median of 39% in PPCI group Median of 44% in lytic group
Angiograms	9/18 had angiograms; 6/9 (67%) had Obstructive CAD	28/28 had angiograms 17/28 (61%) had Obstructive CAD	39/39 had angiograms 32/39 had TIMI 0/1 (82.1%)	6 of 11 (54%) had thrombotic MINOCA (non-atherosclerotic), compared to	19/78 (25%) had PCI asd primary reperfusion strategy 4/19 had stent thrombosis 18/19 had obstructive CAD
Hosp Mortality	13/18 (72%)	11/28 (39.3%)	7/39 (18%)	3/11 (27%)	9/78 (12%) - (26% in PCI group, and 7% in fibrinolytic group)

#CardioTwitter : STEMI in COVID with non-obstructive CAD

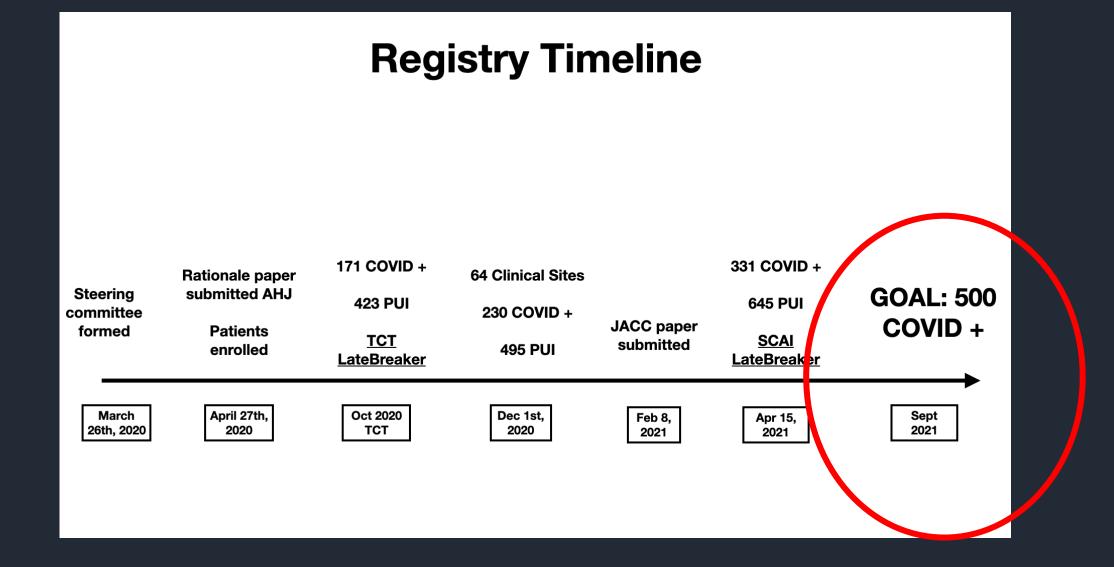

<u>North American COVID</u> <u>Myocardial</u> Infarction Registry (NACMI): A Unique Collaboration



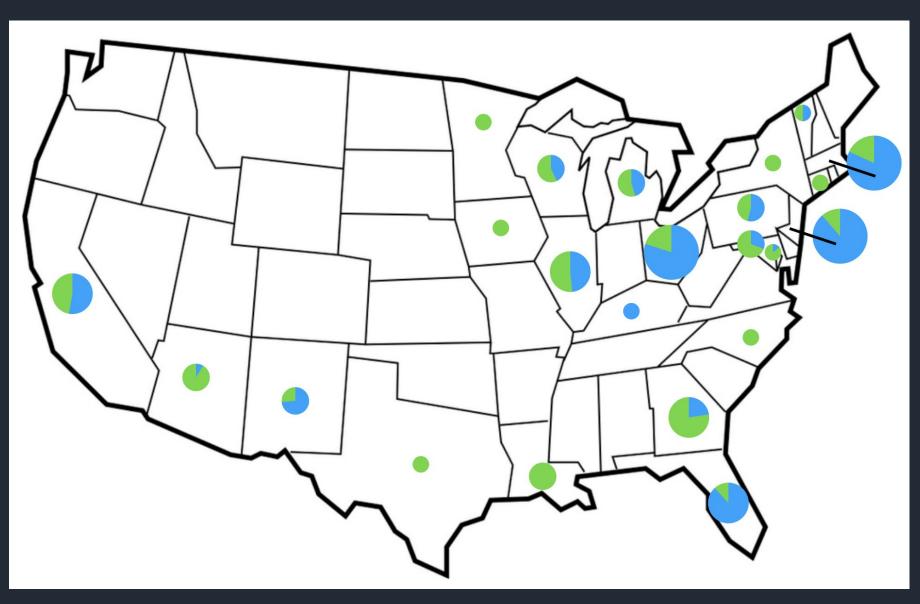

AMERICAN COLLEGE of CARDIOLOGY

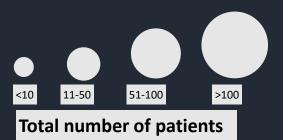
Pathways for enrollment into NACMI

NACMI-Initial Results

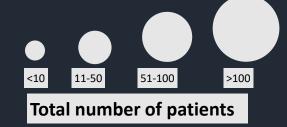


JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2021 THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. PUBLISHED BY ELSEVIER. ALL RIGHTS RESERVED.


VOL. 77, NO. 16, 2021


Initial Findings From the North American COVID-19 Myocardial Infarction Registry

Santiago Garcia, MD,^a Payam Dehghani, MD,^b Cindy Grines, MD,^{c,d} Laura Davidson, MD,^e Keshav R. Nayak, MD,^f Jacqueline Saw, MD,^g Ron Waksman, MD,^h John Blair, MD,ⁱ Bagai Akshay, MD,^j Ross Garberich, MS, MBA,^a Christian Schmidt, MS,^a Hung Q. Ly, MD, SM,^k Scott Sharkey, MD,^a Nestor Mercado, MD,¹ Carlos E. Alfonso, MD,^m Naoki Misumida, MD,ⁿ Deepak Acharya, MD,^o Mina Madan, MD,^p Abdul Moiz Hafiz, MD,^q Nosheen Javed, MD,^r Jay Shavadia, MD,^s Jay Stone, MD,^t M. Chadi Alraies, MD,^u Wah Htun, MD,^v William Downey, MD,^w Brian A. Bergmark, MD,^x Jospeh Ebinger, MD,^y Tareq Alyousef, MD,^z Houman Khalili, MD,^{aa} Chao-Wei Hwang, MD, PHD,^{bb,cc} Joshua Purow, MD,^{dd} Alexander Llanos, MD,^{dd} Brent McGrath, MD,^{ee} Mark Tannenbaum, MD,^{ff} Jon Resar, MD,^{gg} Rodrigo Bagur, MD,^{hh} Pedro Cox-Alomar, MD,ⁱⁱ Ada C. Stefanescu Schmidt, MD, MSc,^{jj} Lindsey A. Cilia, MD,^{ji} Farouc A. Jaffer, MD, PHD,^{jj} Michael Gharacholou, MD,^{kk} Michael Salinger, MD,^{ll} Brian Case, MD,^h Ameer Kabour, MD,^{mm} Xuming Dai, MD,ⁿⁿ Osama Elkhateeb, MD,^{oo} Taisei Kobayashi, MD,^{pp} Hahn-Ho Kim, MD,^{qq} Mazen Roumia, MD,^{rr} Frank V. Aguirre, MD,^{ss} Jeffrey Rade, MD,^{tt} Aun-Yeong Chong, MD,^{uu} Hurst M. Hall, MD,^{vv} Shy Amlani, MD,^{ww} Alireza Bagherli, MD,^{sx} Rajan A.G. Patel, MD,^{sy} David A. Wood, MD,^{zz} Frederick G. Welt, MD,^{aaa,bbb} Jay Giri, MD, MPH,^{pp} Ehtisham Mahmud, MD,^{ccc} Timothy D. Henry, MD,^{ddd} on behalf of the Society for Cardiac Angiography and Interventions, the Canadian Association of Interventional Cardiology, and the American College of Cardiology Interventional Council

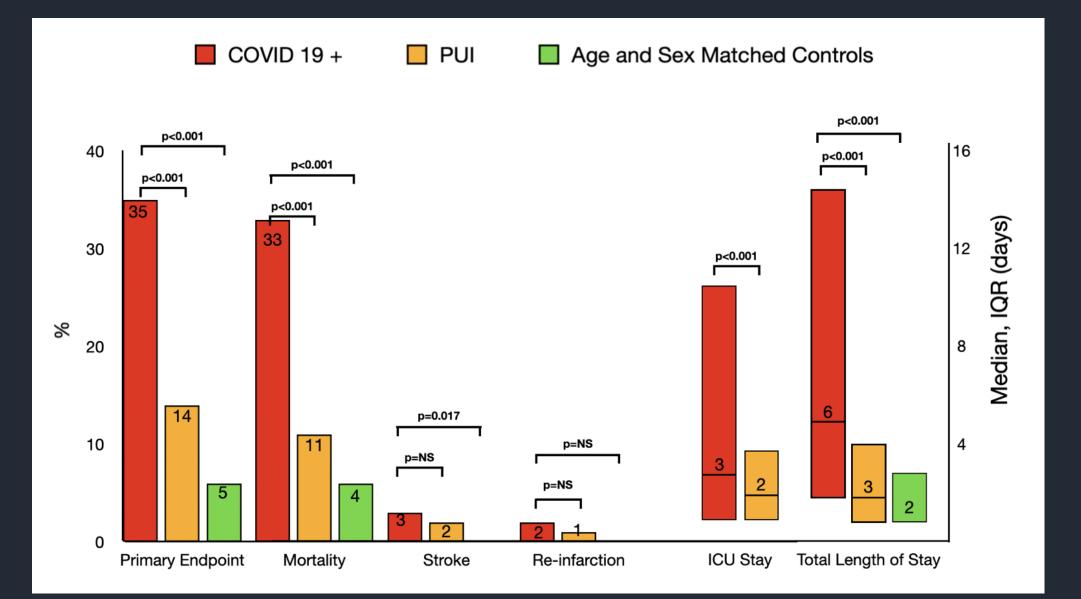


Canada NACMI 26 COVID Positive 124 PUI

Baseline characteristics of COVID Positive and PUI

	COVID positive (n=331)	PUI (n=645)	P Value
Age >55	252 (76)	462 (72)	0.114
History of CAD	76 (26)	168 (27)	0.552
Non-Caucasian	186 (55)	180(25)	<0.001
Dyslipidemia	140 (47)	354 (59)	<0.001
Diabetes Mellitus	135 (44)	302 (33)	<0.001
BMI, mean ± SD	29.2±6.3	29.7±7.1	0.31
Arterial Hypertension	231 (73)	452 (72)	0.73
History of heart failure	49 (17)	64 (11)	0.009
Statin on Admission	128 (39)	225 (35)	0.244

Presentation COVID Positive and PUI

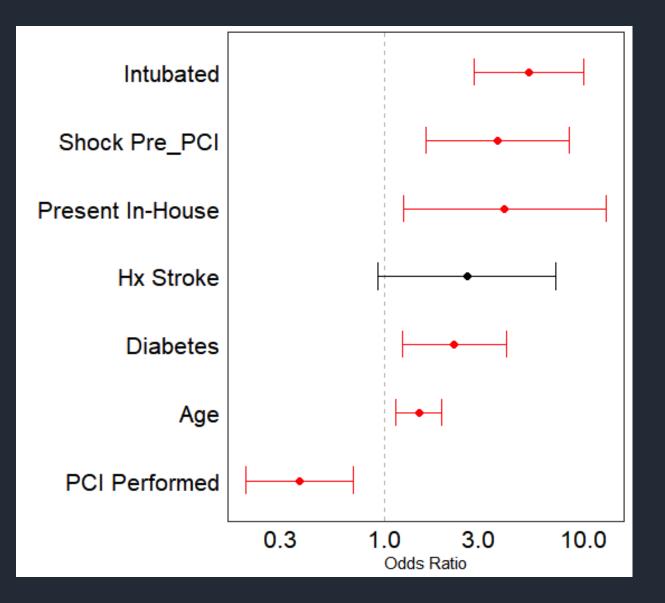

	COVID positive (n=331)	PUI (n=645)	P Value			
Symptoms on presentation						
Dyspnea	169 (51)	228(35)	<0.001			
Chest pain	175 (53)	514 (80)	<0.001			
Syncope	10 (3)	33 (5)	0.131			
Abnormal Chest X ray findings						
Infiltrates	149 (45)	101 (16)	<0.001			
Pleural effusion	30 (9)	43 (7)	0.178			
Cardiomegaly	27(8)	36 (6)	0.121			
High-Risk Pre-PCI conditions						
Cardiac arrest pre-PCI	32 (11)	91 (15)	0.144			
Shock pre-PCI	46 (16)	79 (13)	0.177			
Ejection Fraction mean-SD	45 (33,55)	45 (35,53)	0.638			
In-House presentation of MI	21 (7)	10 (2)	<0.001			

Reperfusion Strategies

- 80% underwent angiography
- PPCI (71% of patients referred for angio, 55% of overall group)

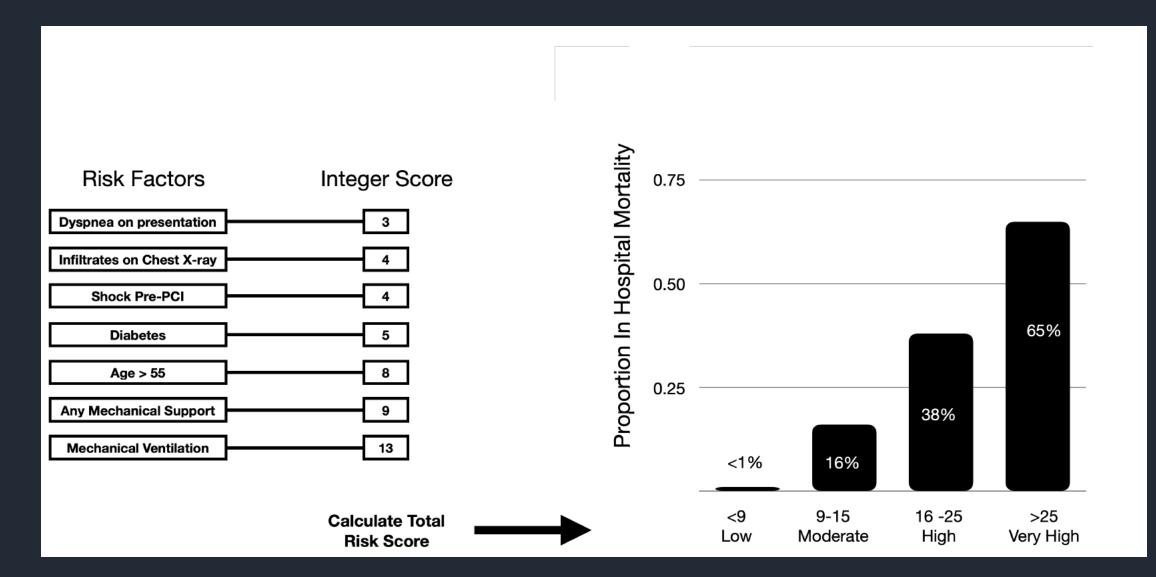
		Medical therapy (n=36, 20%)		COVID +	PUI	P-value	Historical Control	P- value
		PPCI	No Angio	22%	4%	<0.001	0	<0.001
179 COVID + Patients undergoing angiography		(n=127, 71%) CABG surgery (n=3, 2%)	D2B time, median (IQR)	79 (52,125)	77 (55,119)	0.989	66 (46,93)	0.008
	Thrombolysis (n=6, 3%) Facilitated/Rescue PCI (n=7, 4%)	D2B time < 90 minutes (%)	58%	63%	0.422	73%	0.006	

MHIF Cardiovascular Grand Rounds Updated Clinical Outcomes in NACMI

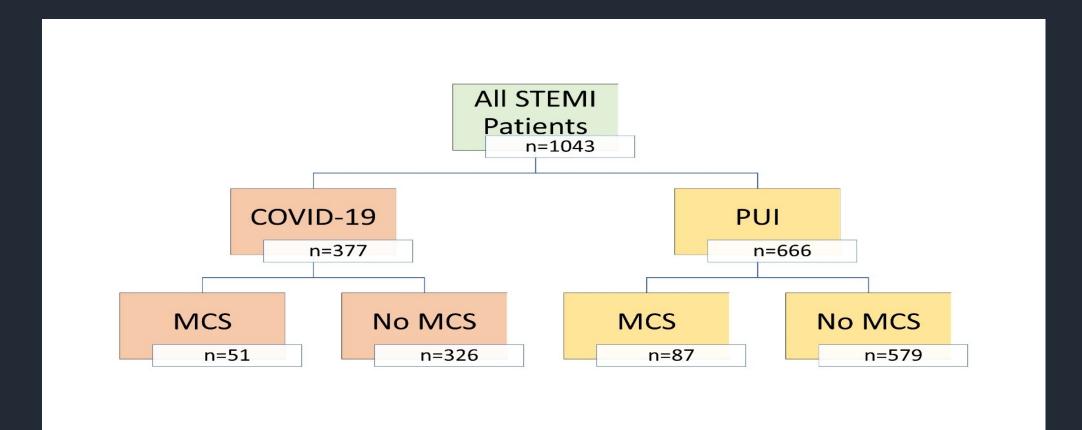

MHIF Cardiovascular Grand Rounds

NACMI Patient (MHI)

73-year-old man h and ARDS.
He is taken to the (shock and refracto)
On day 5, a CT scan shows intracranial bleeding. Family withdrew support. **COVID** infection

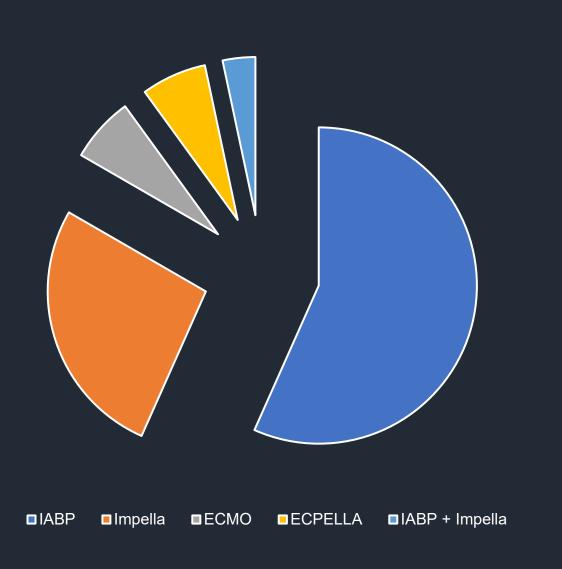

for cardiogenic

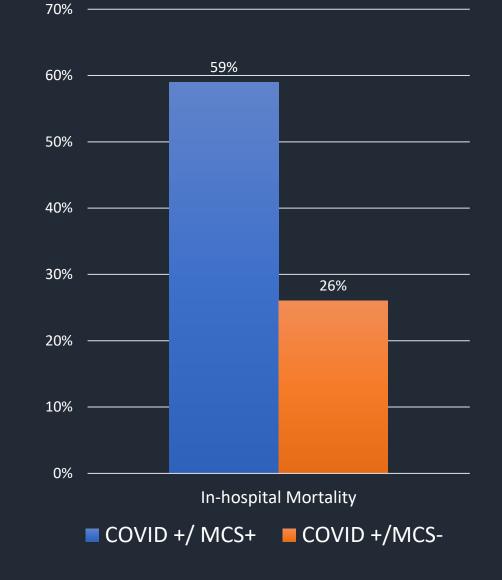
Multi-Variate Predictors of Death in COVID + STEMI (n=331)

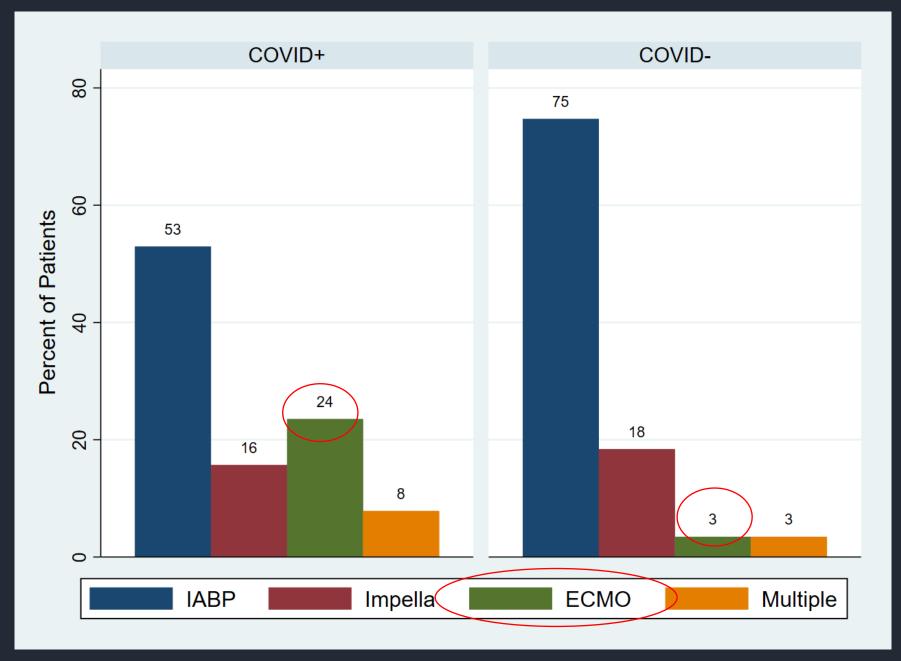


MHIF Cardiovascular Grand Rounds

NACMI Risk Score




MCS in NACMI 13 % of COVID + Patients



MCS Devices in NACMI

13 % of COVID + Patients

Ongoing Analyses

- 1-year Follow-up of survivors
- Angiographic core lab
- ECG core lab
- Gender and ethnic differences
- Canada vs. USA
- Risk score
- MCS

Acknowledgments

Industry sponsorsMedtronicAbbott Vascular

The North American COVID-19 STEMI Registry

Santiago Garcia, MD

Back up slides

COVID-19 Hospitalization and Death by Race/Ethnicity

Updated Nov. 30, 2020 Print

Race and ethnicity are risk markers for other underlying conditions that affect health including socioeconomic status, access to health care, and exposure to the virus related to occupation, e.g., frontline, essential, and critical infrastructure workers.

Rate ratios compared to White, Non- Hispanic persons	American Indian or Alaska Native, Non-Hispanic persons	Asian, Non- Hispanic persons	Black or African American, Non-Hispani persons	Hispanic or Latino persons
Cases ¹	1.8x	0.6x	1.4x	1.7×
Hospitalization ²	4.0x	1.2x	3.7x	4.1×
Death ³	2.6x	1.1×	2.8x	2.8x