MHIF FEATURED STUDY:

AKI

CONDITION:

Preventing AKI post OHS

PI:

Dr. Shukrallah

Coming soon:

Please Refer Patients!

RESEARCH CONTACT:

Steph Ebnet

Stephanie.ebnet@allina.com | 612-863-6286

SPONSOR: Astellas Pharma Inc. (API)

DESCRIPTION: To evaluate the efficacy of postsurgery treatment with ASP1128 (investigational medication) in subjects at risk for acute kidney injury (AKI) following coronary artery bypass graft (CABG) and/or valve surgery. ASP1128 is a potent and highly selective PPARδ modulator, that is believed to have protective effects on kidney cells that are under cellular stress as a result of ischemia, inflammation and oxidative stress following coronary artery bypass graft and/or valve (CABG/V) surgery. In addition, ASP1128 will reduce inflammatory responses and increased oxidative stress systemically which is expected to reduce the immediate consequences of stress responses following CABG/V surgery.

CRITERIA LIST/ QUALIFICATIONS:

Inclusion

Subject undergoing non-emergent open chest cardiovascular surgery with use of CPB (i.e., CABG and/or valve surgery [including aortic root and ascending aorta surgery, without circulatory arrest])

Exclusion

- On another investigational medication
- GFR < 30
- Prior kidney transplant
- Known or suspected glomerulopephritis
- · Endocarditis or active infection

- Subject has moderate/high risk of developing AKI following surgery (must have 2 risk factors):
 - Risk factors: age > 70, eGFR < 60, CHF, DM, proteinuria/albuminuria
 - Surgery off pump
 - IV Drug abuse
 - Chronic liver disorder
 - LVAD

PULMONARY ARTERY EMBOLISMS

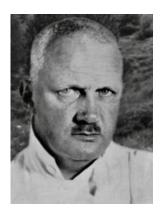
Benjamin Sun, MD Abbott Northwestern Hospital

History

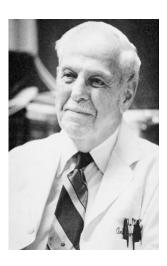
- · Giovanni Battista Morgagni
 - (25 February 1682 6 December 1771)
 - Italian Anatomist
 - · 'Father of modern pathology'
 - Identified the presence of large clots in the pulmonary arteries found at autopsy in patients who had died suddenly
 - · "Where is the disease?"

History

- Rudolph Virchow
 - (13 October 1821 5 September 1902)
 - · German physician, pathologist
 - · Studying Jean Cruveilhier's doctrine
 - "That the essence of inflammation is coagulation of the blood in the veins in the capillaries" i.e phlebitis.
 - 1859: "[T]he detachment of larger or smaller fragments from the end of the softening thrombus which are carried along by the current of blood and driven into remote vessels. This gives rise to the very frequent process on which I have bestowed the name of Embolia."
 - Virchow's Triad
 - Blood stasis
 - Endothelial injury
 - Hypercoagulability


History

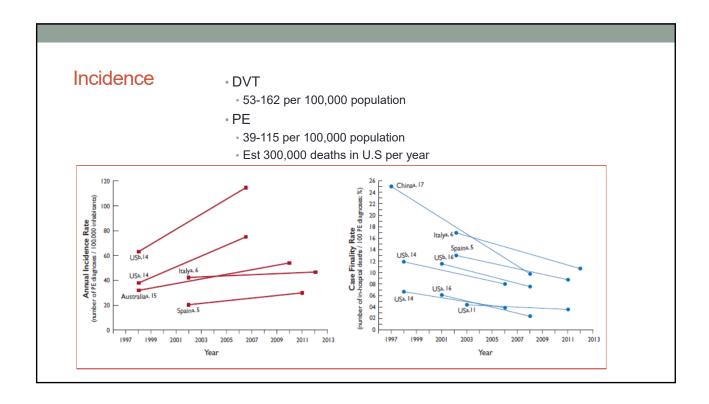
- Friedrich Trendelenburg
 - (24 May 1844 15 December 1924)
 - · German Surgeon
 - Identified the acute mortality of this disease in 9 patients, Leipzig Germany.
 - "Perfected a surgical procedure in a calf using a left parasternal thoracotomy through which the pulmonary artery was opened and the embolus was removed"
 - He treated two patients with this procedure but unfortunately both patients died

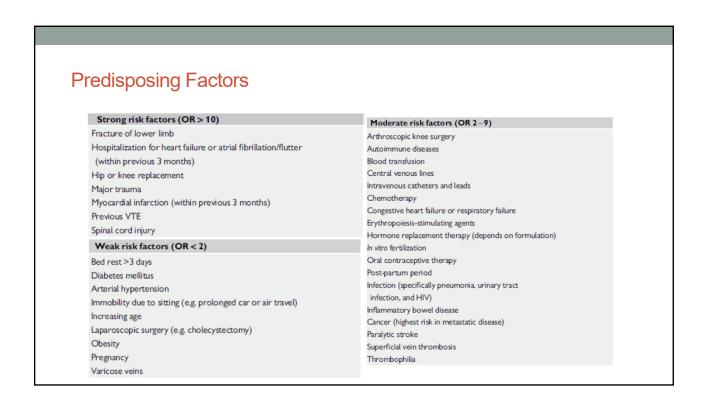

History

- Martin Kirschner
 - (28 October 1879 30 August 1942)
 - · German Surgeon
 - · Student of Trendelenburg
 - March 18, 1924, performed the first successful pulmonary artery embolectomy after a routine hernia operation
 - "Trendelenburg Operation"

History

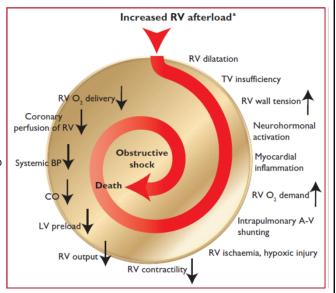
- · Alton Ochsner, Sr.
 - (May 4, 1896 September 24, 1981)
 - US Thoracic Surgeon
 - · Started the Ochsner Clinic
 - Was present at the meeting where Dr. Kirshner presented the Trendelenburg operation.
 - Due to very poor outcomes with only 10 survivors over 300 procedures, he advocated for prophylactic approaches
 - Wrapping the legs
 - Early ambulation
 - Electrical stimulation of calf muscles
 - Head down position
 - Anticoagulation
 - Ligation of the inferior vena cava to prevent pulmonary embolism




Types

- Infectious
- Occult
- Sub segmental
- Sub Massive
- Massive

Risk Factors


- Age
- Obesity
- Immobility
 - Air travel
 - Post procedural
 - Orthopedics
- Trauma
 - Orthopedic
 - Vascular
- Hypercoagulability
 - Dehydration
 - Malignancy
 - Oral contraceptives
 - Tobacco use

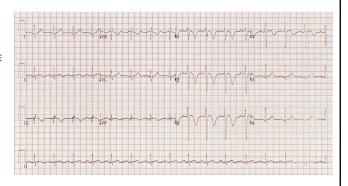
Pathophysiology of PE

- Acute PE interferes with both circulation and gas exchange
- Right ventricular failure due to acute pressure overload is the primary cause of death in severe PF
- A nonpreconditioned thin-walled RV is generally unable to generate a mean PAP>40 mmHg
- Anatomical obstruction and hypoxic vasoconstriction in the affected lung area leads to an increase in PVR
- PE-induced vasoconstriction, mediated by thromboxane A2 and serotonin release contributes to additional increase in pulmonary vascular resistance
- RV strain and systemic hypotension can result in elevated cardiac biomarkers and systemic epinephrine levels

Presentation

- · Acute pleuritic chest pain
- · Acute shortness of breath
- · Concomitant syncope
- Hemoptysis
- Shock
- Cardiac arrest

Differential Diagnosis


- · Acute coronary syndrome
- Arrythmia
- · Acute dissection
- Pneumonia
- Pleurisy
- Pericarditis
- · Diaphragmatic hernia
- Achalasia
- · Esophageal Spasm

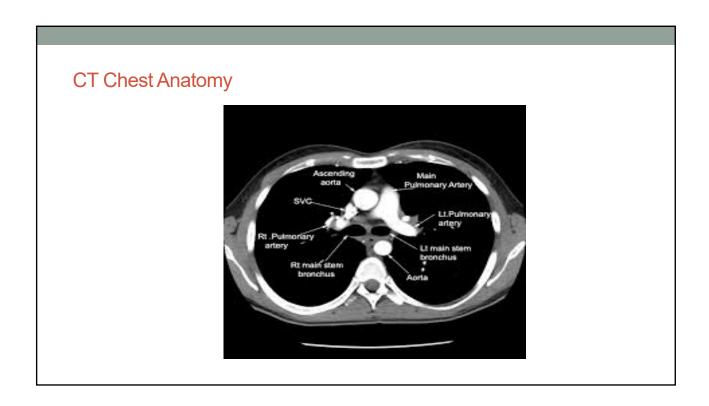
Diagnostics

- - HR: usually tachycardic
 - BP: usually lower
- O₂Sat: usually lower
- Physical Exam
 - May or may not have a history or ongoing swelling in a lower extremity
- Upper extremity thrombus rarely leads to clinically significant PE Isolated calf DVT rarely leads to clinically significant PE
 Often does not have pleuritic chest pain
 Anxious

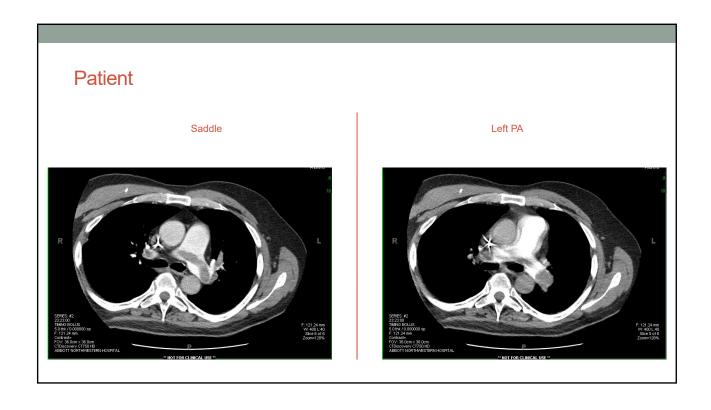
- · EKG:
 - Inversion of T waves in V1-V4
 - · Right bundle branch block
 - New onset atrial fibrillation
- · Often is non diagnostic
- ECHO
- · CT Scan
 - Timing of dye infusion
 Pulmonary artery

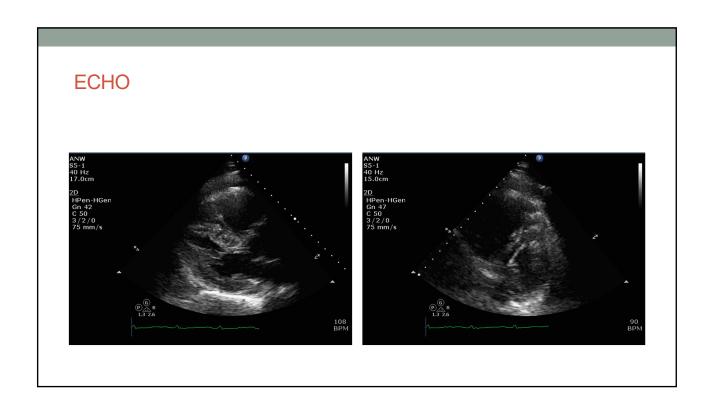
 - Aorta

The revised Geneva clinical prediction rule for PE

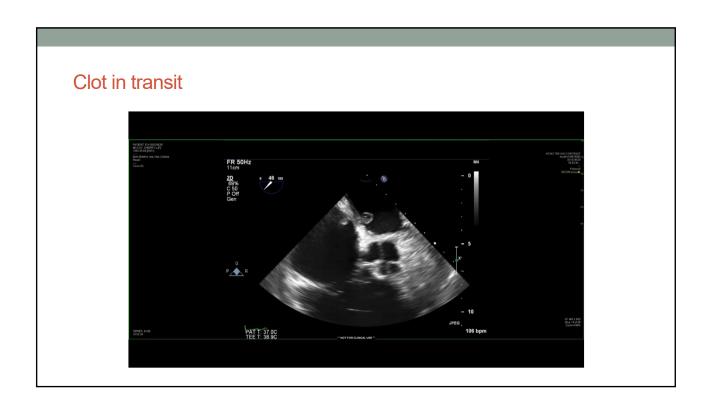

Items	Clinical decision rule points		
	Original version ⁹¹	Simplified version ⁸⁷	
Previous PE or DVT	3	1	
Heart rate			
75 – 94 b.p.m.	3	1	
≥95 b.p.m.	5	2	
Surgery or fracture within the past month	2	1	
Haemoptysis	2	1	
Active cancer	2	1	
Unilateral lower-limb pain	3	1	
Pain on lower-limb deep venous palpation and unilateral oedema	4	1	
Age >65 years	1	1	
Clinical probability			
Three-level score			
Low	0-3	0-1	
Intermediate	4-10	2-4	
High	≥11	≥5	
Two-level score			
PE-unlikely	0-5	0-2	
PE-likely	>6	≥3	

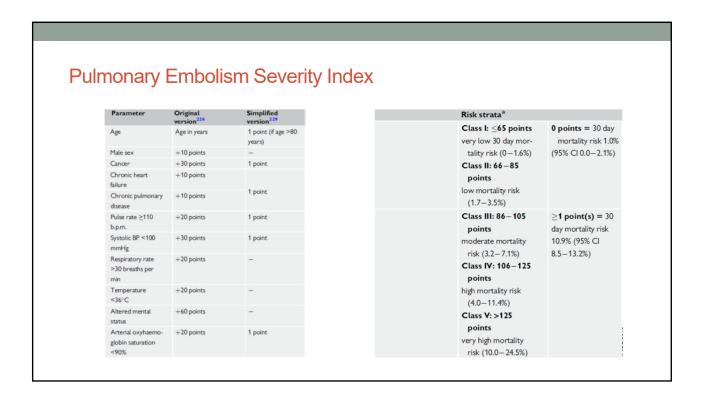
b.p.m. = beats per minute; DVT = deep vein thrombosis; PE = pulmonary


The Wells Clinical Prediction Rule for PE


Items	Clinical decision rule points	
	Original version ¹	Simplified version ²
Previous PE or DVT	1.5	1
Heart rate >100 b.p.m.	1.5	1
Surgery or immobilization within the past 4 weeks	1.5	1
Haemoptysis	1	1
Active cancer	1	1
Clinical signs of DVT	3	1
Alterative diagnosis less likely than PE	3	1
Clinical probability		
Three-level score		
Low	0-1	N/A
Intermediate	2-6	N/A
High	≥7	N/A
Two-level score		
PE unlikely	0-4	0-1
PE likely	≥5	≥2
b.p.m. = beats per minute: DVT = deep vein thrombosis: N/A = not appl	icable: PE = pulmonary embolism.	

	Strengths	Weaknesses/limitations	Radiation issues ^a
СТРА	Readily available around the clock in most centres Excellent accuracy Strong validation in prospective management outcome studies Low rate of inconclusive results (3 – 5%) May provide alternative diagnosis if PE excluded Short acquisition time	Radiation exposure Exposure to iodine contrast: Imited use in iodine allergy and hyperthyroidism risks in pregnant and breastfeeding women contraindicated in severe renal failure Tendency to overuse because of easy accessibility Clinical relevance of CTPA diagnosis of subsegmental PE unknown	Radiation effective dose 3—10 mSv ^b Significant radiation exposure to young female breast tissue
Planar I/Q scan	Almost no contraindications Relatively inexpensive Strong validation in prospective management outcome studies	Not readily available in all centres Interobserver variability in interpretation Results reported as likelihood ratios Inconclusive in 50% of cases Cannot provide alternative diagnosis if PE excluded	 Lower radiation than CTPA, effective dose ~2 mSv^b
V/Q SPECT	Almost no contraindications Lowest rate of non-diagnostic tests (<3%) High accuracy according to available data Binary interpretation ("PE" vs. 'no PE")	Variability of techniques Variability of diagnostic criteria Cannot provide alternative diagnosis if PE excluded No validation in prospective management outcome studies	 Lower radiation than CTPA, effective dose ~2 mSv^b
Pulmonary angiography	Historical gold standard	 Invasive procedure Not readily available in all centres 	 Highest radiation, effective dose 10-20 mSv^b



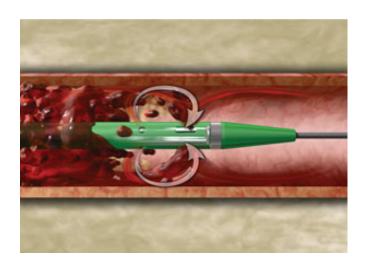


Classification of pulmonary embolism severity and the risk of early (in-hospital or 30 day) death

Early mortality risk		Indicators of risk			
		Haemodynamic instability ^a	Clinical parameters of PE severity and/ or comorbidity: PESI class III−V or sPESI ≥I	RV dysfunction on TTE or CTPA ^b	Elevated cardiac troponin levels ^c
	High	+	(+) d	+ (+)	
Intermediate	Intermediate—high Intermediate—low		+ e	+	+
intermediate			+ e	One (or none) positive	
Low		-	-	-	Assesment optional; if assessed, negative

Clinical Classifications of PE

Sub Massive


- Acute PE without systemic hypotension
 - (systolic blood pressure >90 mm Hg)
- With either RV dysfunction or myocardial necrosis
- RV dysfunction means the presence of at least 1 of the following:
 - —RV dilation (apical 4-chamber RV diameter divided by LV diameter >0.9) or RV systolic dysfunction on echocardiography
 PV diameter divided by LV diameter
 - $^{\circ}$ —RV dilation (4-chamber RV diameter divided by LV diameter >0.9) on CT
 - —Elevation of BNP (>90 pg/mL)
 - Elevation of N-terminal pro-BNP (>500 pg/mL); or
 - Electrocardiographic changes (new complete or incomplete right bundle-branch block, anteroseptal ST elevation or depression, or anteroseptal T-wave inversion)
- · Myocardial necrosis is defined as either of the following:
 - —Elevation of troponin I (>0.4 ng/mL) or
 - —Elevation of troponin T (>0.1 ng/mL)

Massive

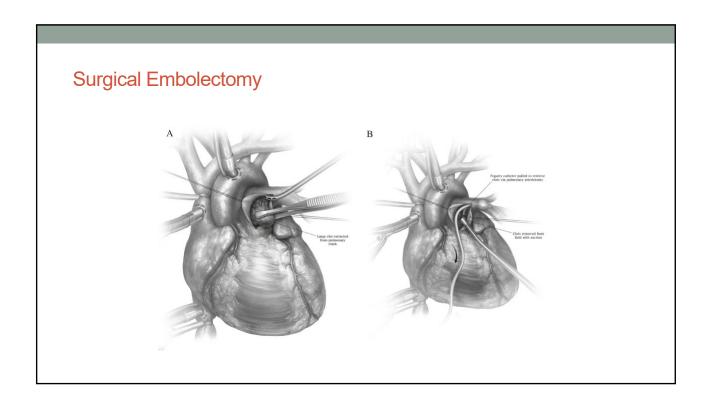
- Acute PE with sustained hypotension
 - (systolic blood pressure <90 mm Hg for at least 15 minutes
- Requiring inotropes
- Pulselessness
- Persistent profound bradycardia
 - $\,{}^{\circ}$ (heart rate <40 bpm with signs or symptoms of shock).

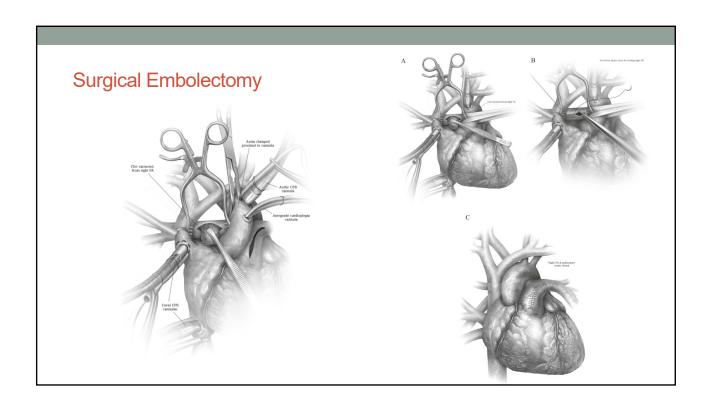
Therapeutic Options

- Resuscitation
 - · ECMO
- Anticoagulation
- Thrombolytics
- Percutaneous catheter-directed treatment
- Surgery

Treatment Approach

- Clot Burden
- Location
 - Central
 - Peripheral
- · Hemodynamic Stability
 - RV strain
 - · Hypoxia (intubation)
 - Inotropes
 - · ECMO
- Ability to tolerate thrombolytics
 - · Recent surgery
 - Recent bleeding
- What options are available
 - · Catheter based
 - Surgery


Thrombolytic regimens, doses, and contraindications


Molecule	Regimen	Contraindications to fibrinolysis	
rtPA	100 mg over 2 h	Absolute	
	0.6 mg/kg over 15 min (maximum dose 50 mg) ^a	History of haemorrhagic stroke or stroke of unknown origin	
Streptokinase	250 000 IU as a loading dose over 30 min, followed by	Ischaemic stroke in previous 6 months	
	100 000 IU/h over 12-24 h	Central nervous system neoplasm	
	Accelerated regimen: 1.5 million IU over 2 h	Major trauma, surgery, or head injury in previous 3 weeks	
Urokinase	4400 IU/kg as a loading dose over 10 min, followed by	Bleeding diathesis	
O' O' G'	4400 IU/kg/h over 12 – 24 h	Active bleeding	
	Accelerated regimen: 3 million IU over 2 h	Relative	
	Accelerated regiments 3 million to over 2 m	Transient ischaemic attack in previous 6 months	
		Oral anticoagulation	
		Pregnancy or first post-partum week	
		Non-compressible puncture sites	
• 9.9 % risk	of severe bleeding	Traumatic resuscitation	
• 1.7% of cerebral hemorrhage		Refractory hypertension (systolic BP >180 mmHg)	
		Advanced liver disease	
		Infective endocarditis	
		Active peptic ulcer	

Percutaneous catheter-directed treatment

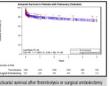
- Some encouraging results but mostly case series
- Survival to hospital discharge up to 87%
- One randomized to thrombolytics in intermediaterisk PE

Catheter interventions with thrombolysis		Catheter interventions without thrombolysis		
Technique	Device examples	Technique	Device examples	
Catheter-directed thrombolysis	UniFuse® (Angio Dynamics, Latham, NY) Cragg-McNamara® (ev3 Endovascular,	Aspiration thrombectomy	Aspirex [®] 8 F or 10 F catheter (Straub Medical, Switzerland): rotational thrombectomy ^a	
Plymouth, MN) 4-5 F infusion	Plymouth, MN) 4–5 F infusion catheters, with 10–20 cm infusion length		Angiovac suction cannula® (Angio Dynamics, Latham, NY): veno-venous bypass system, with 26 Faccess for inflow and 16–20 F access for outflow	
			Indigo® Mechanical Thrombectomy System (Penumbra, Alameda, CA): 8 F vacuum- assisted aspiration with mechanical clot engagement	
			Sheath with detachable haemostatic valve 8 –9 F (Argon Medical Devices, Athens, TX), multi- purpose guide catheter (8–9 F), aspiration syringe (60 mL)	
Ultrasound-assisted catheter-directed thrombolysis	EkoSonic 5.2 [®] F 12 cm treatment zone device (EKOS, Bothell, WA)	Mechanical thrombectomy	Flowtriever [®] (Inari Medical, Irvine, CA): 20 F device with three self-expanding nitinol discs entrapping the thrombus with simultaneous aspiration	
Rheolytic thrombectomy plus catheter-directed thrombolysis	AngioJet 6 F PE® thrombectomy with Power Pulse TM thrombolysis (Boston Scientific, Minneapolis, MN) ^a	Rheolytic thrombectomy	AngioJet 6 F PE^{\oplus} catheter (Boston Scientific, Minneapolis, MN) ^a	
Combined techniques	For example, pigtail fragmentation (5 F) plus AngioJet 6 F PE® thrombectomy with Power Pulse TM thrombolysis	Thrombus	Pigtail catheter (5 – 6 F) or peripheral balloon	
		fragmentation Combined techniques	catheters (6–7 F, balloon diameter 5–10 mm) Pigtail fragmentation (5 F) plus thrombectomy with Aspirex® 8/10 F	

Surgery

- Sternotomy
- · Cardiopulmonary Bypass
- · Warm and beating
- Open the PA and extract the clot

Survival and recurrence after acute pulmonary embolism treated with pulmonary embolectomy or thrombolysis in New York State, 1999 to 2013

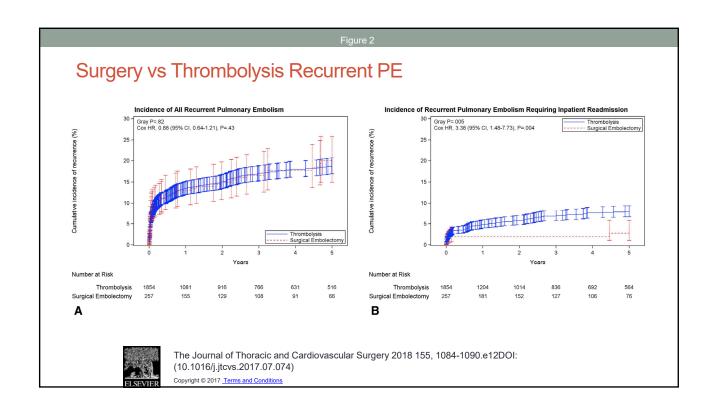

Timothy Lee, BS,^a Shinobu Itagaki, MD, MS,^a Yuting P. Chiang, MD, MS,^b Natalia N. Egorova, PhD,^c David H. Adams, MD,^a and Joanna Chikwe, MD^{a,d}

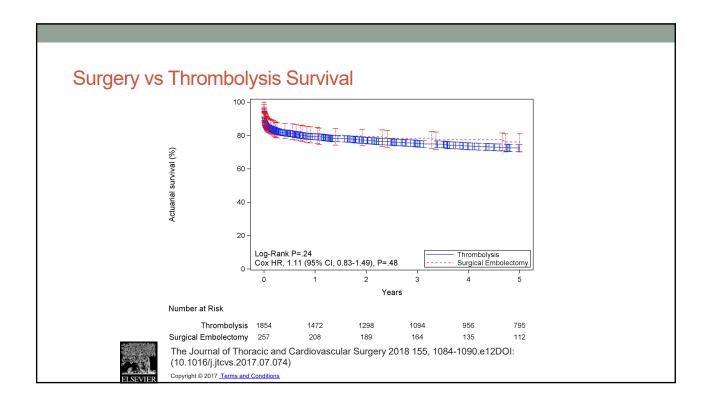
Background: Pulmonary embolism (PE) results in more than 250,000 hospitalizations annually in the United States, with high mortality. Outcome data are limited, and reperfusion strategies remain controversial. Here we evaluated the outcomes of thrombolysis and surgical embolectomy in patients with acute PE us-ing a statewide database.

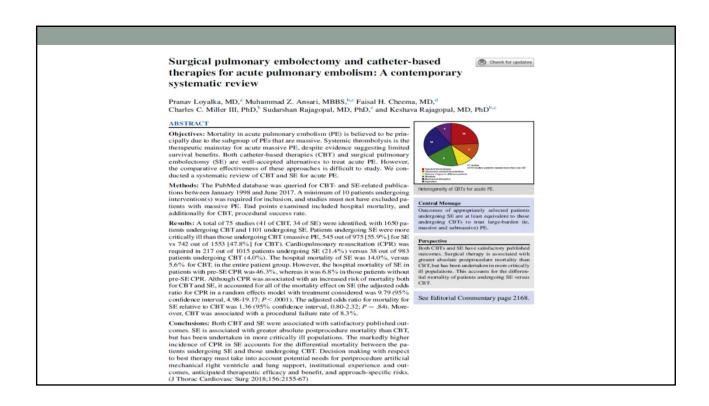
Methods: Among 174,322 patients hospitalized with PE in New York State between 1999 and 2013, we performed a retrospective comparison of 2111 adults with acute PE who underwent either thrombolysis (n = 1854; 88%) or surgical embolectomy (n = 257; 12%) as first-line therapy. Patients were identified using a mandatory database. The median follow-up was 4.2 years (range, 0-16.3 years). The primary study endpoint was all-cause mortality; secondary outcome included recurrent PE, recurrent deep vein thrombosis, reintervention, and stroke

Results: In 2111 patients who underwent reperfusion, there was no difference in 30-day mortality between those who underwent thrombolysis and those who underwent surgical embolectomy (15.2% vs 13.2%; odds ratio [OR], 1.12, 95% confidence interval [CI], 0.72-1.73). Thombolysis was associated with higher risk of stroke (1.9% vs 0.8%; OR, 4.70; 95% CI, 1.08-20.42) and reintervention (3.8% vs 1.2%; OR, 7.16; 95% CI, 2.17-23.62) at 30 days. Five-year actuarial survival was similar in the 2 groups (7.2.4% [95% CI, 7.0.3%-47.5%] vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.9.3%-47.5%) vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.9.3%-47.5%] vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.9.3%-47.5%] vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.9.3%-47.5%] vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.9.3%-47.5%] vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.9.3%-47.5%] vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.9.3%-47.5%] vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.9.3%-47.5%] vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.9.3%-47.5%] vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.9.3%-47.5%] vs 76.1% [95% CI, 7.0.2%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.0.3%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.0.3%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.0.3%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.0.3%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.0.3%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.0.3%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.0.3%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.0.3%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.0.3%-81.0%]; hazard ratio (HR) for death, 1.11; 95% CI, 7.0.3%-81.0%]; hazar 10.1% [93.% CI, 102.7%-13.0%], lazard tail (rik) for death, 1711, 53.0% (0.83-1.49). Thrombolysis was associated with a higher rate of recurrent PE necessitating inpatient readmission (7.9% [95% CI, 6.9%-9.4%] vs 2.8% [95% CI, 1.1%-5.8%]; HR, 3.38; 95% CI, 1.48-7.73).

Conclusions: Pulmonary embolectomy and thrombolysis are associated with similar early and long-term survival, supporting guideline recommendations for embolectomy when thrombolysis is contraindicated. (J Thorac Cardiovase Surg 2018;155:1084-90)

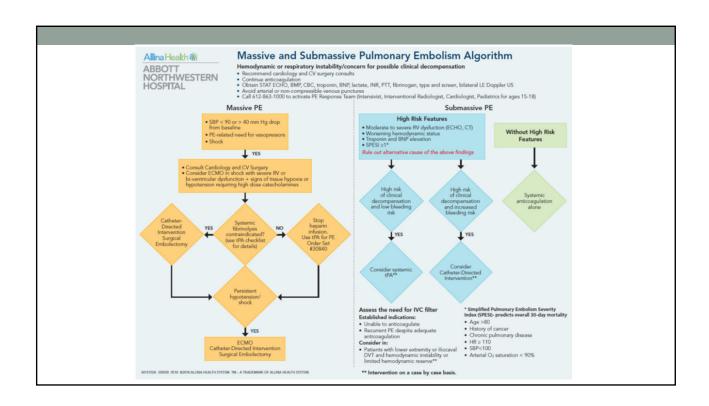



See Editorial page 1080.


Surgery vs Thrombolysis 30 day Outcomes

Outcome	Thrombolysis (n = 1854), n (%)	Surgery (n = 257), n (%)	OR (95% CI)*	P value
Mortality	282 (15.2)	34 (13.2)	1.12 (0.72-1.73)	.62
Recurrent pulmonary embolism	137 (7.4)	22 (8.6)	0.99 (0.61-1.61)	.97
Recurrent pulmonary embolism necessitating inpatient readmission	46 (2.5)	3 (1.2)	1.20 (0.81-1.76)	.37
Recurrent deep vein thrombosis	73 (4.9)	12 (4.7)	1.03 (0.53-1.99)	.93
Reoperation or reintervention†	71 (3.8)	3 (1.2)	7.16 (2.17-23.62)	.001
Stroke	35 (1.9)	2 (0.8)	4.70 (1.08-20.42)	.039
Major bleed	67 (3.6)	23 (9.0)	0.53 (0.31-0.92)	.024
Blood transfusion	225 (12.1)	51 (19.8)	0.73 (0.49-1.07)	.11

OR, Odds ratio; CI, confidence interval. *Adjusted using logistic regression analysis, with all patient demographics and baseline characteristics entered as covariates into initial model, and covariates in the final model determined via stepwise selection with P = .25 for entry into the model and P = .15 to stay in the model. †Reoperation or reintervention



Conclusions

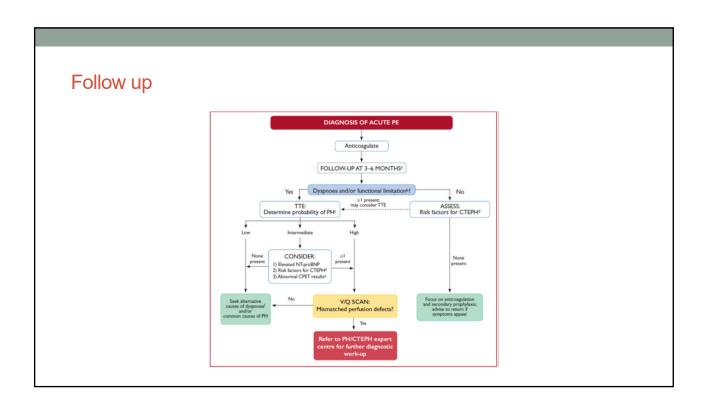
- · Both had satisfactory outcomes
- · Surgical embolectomy
 - · Sicker population
 - 21% had preop CPR vs 4% in catheter based (46% mortality with CPR)
 - · Advantage for people who may need mechanical support
 - Advantage for central PE and larger embolic burden
- · Catheter based Therapy
 - · Surgery is contraindicated
 - More peripheral disease
 - Failure rate of 8.3% requiring reintervention

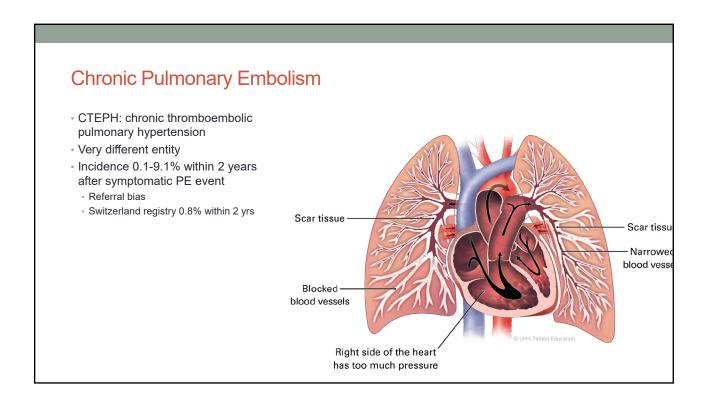
Abbott Northwestern Data 2018-2019

- In 2018 ANW had 372 PE patients, of those patients:
- 8% required PERT Activation.
- 38% had an ICU stay.
- 16 Catheter directed intervention
 - Survival rate of 19%.
 - 2 PEA arrest during procedure
 - Hemorrhage into brain mass on iv heparin
- 3 underwent surgical Embolectomy
 - Survival rate of 66%
 - · Complications included:

 - Confirmed massive PE. E-CPR, VA ECMO followed by surgical embolectomy. Decannulated next day. Survived. Confirmed massive PE. S/p surgical embolectomy and Protek Duo. Recurrent episodes of hypotension and resp failure. Made comfort care eventually and expired.
 - Massive PE, s/p recent spine surgery. Surgical embolectomy. Survived, d/c'd home
- 4 received ECMO

- In 2019 ANW had 384 PE patients, of those patients:
- 9% required PERT Activation.
- 35% had an ICU stay.
- 9 Catheter directed intervention
- Data not complete yet
- 7 underwent surgical Embolectomy
- Survival rate of 43%.
- · 3 patients had preoperative EF of 10-15%
- One received CDI and TPA prior to surgery
- 9 received ECMO

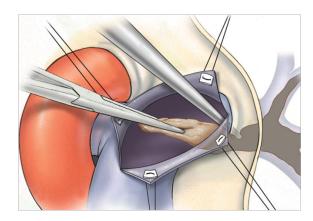

IVC Filter


- · Long term anticoagulation is contraindicated
- · Recurrence for DVT on anticoagulation
- · Anticipated need to stop anticoagulation
- · Residual clot burden (in IVC or legs) with tenuous pulmonary reserve
- · Most will not benefit from an IVC filter
- · Retrievable filters preferred

Anticoagulation in patients after PE (without cancer) Class^a Level^b The rapeutic anticoagulation for ≥ 3 months is recommended for all patients with PE. 34. Patients in whom discontinuation of anticoagulation after 3 months is recommended For patients with first PEVTE secondary to a major transient/reversible risk factor, discontinuation of the apeutic oral anticoagulation is recommended after 3 months. 31(340.341)Patients in whom extension of anticoagulation beyond 3 months is recommended Oral anticoagulant treatment of indefinite duration is recommended for patients presenting with recurrent VTE (that is, with at least one previous episode of PE or DVT) not related to a major transient or reversible risk factor. Oral anticoagulant treatment with a VKA for an indefinite period is recommended for patients with antiphospholipid anti-В body syndrome.3 Patients in whom extension of anticoagulation beyond 3 months should be considered^{c,d} Extended oral anticoagulation of indefinite duration should be considered for patients with a first episode of PE and no identifiable risk factor, 303,311,347,351–353 Extended oral anticoagulation of indefinite duration should be considered for patients with a first episode of PE associated C with a persistent risk factor other than antiphospholipid antibody syndrome. Extended oral anticoagulation of indefinite duration should be considered for patients with a first episode of PE associated with a minor transient or reversible risk factor, ^{2,00,201,3,52} c NOAC dose in extended anticoagulation^e If extended oral anticoagulation is decided after PE in a patient without cancer, a reduced dose of the NOACs apixaban (2.5 mg b.i.d.) or rivaroxaban (10 mg o.d.) should be considered after 6 months of therapeutic anticoagulation. Extended treatment with alternative antithrombotic agents In patients who refuse to take or are unable to tolerate any form of oral anticoagulants, aspirin or sulodexide may be considered for extended VTE prophylaxis.355-3 Follow-up of the patient under anticoagulation In patients who receive extended anticoagulation, it is recommended that their drug tolerance and adherence, hepatic and renal^f function, and bleeding risk be reassessed at regular intervals.²⁵

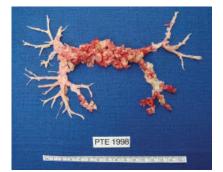
Prognosis

- · Dependent on the severity of the PE
- · Overall mortality:
 - 1023 patients=32% at 5 yrs
 - 5% due to PE or recurrent PE
 - 31% due to cardiovascular causes (MI, CHF, CVA)
 - 64% due to non cardiovascular causes (malignancy, sepsis, etc)
- · Sub Segmental PE do better



Risk Factors for CTEPH

Findings related to the acute PE event (obtained at PE diagnosis)	Concomitant chronic diseases and conditions predisposing to CTEPH (documented at PE diagnosis or at 3-6 month follow-up)	
Previous episodes of PE or DVT	Ventriculo-atrial shunts	
Large pulmonary arterial thrombi on CTPA	Infected chronic i.v. lines or pacemakers	
Echocardiographic signs of PH/RV dysfunction ^a	History of splenectomy	
CTPA findings suggestive of pre-existing chronic thromboembolic disease ^b	Thrombophilic disorders, particularly antiphospholipid antibody syndrome and high coagulation factor VIII levels	
	Non-O blood group	
	Hypothyroidism treated with thyroid hormones	
	History of cancer	
	Myeloproliferative disorders	
	Inflammatory bowel disease	
	Chronic osteomyelitis	


CTEPH Surgery

- Highly selective patient population with favorable anatomy
- Elective
- Sternotomy
- Cardiopulmonary bypass
- Deep hypothermia and intermittent circulatory arrest
- Heart is arrested
- Technically demanding surgery
- Pulmonary artery endarterectomy

CTEPH Surgery

- Highly selective patient population with favorable anatomy
- Elective
- Sternotomy
- Cardiopulmonary bypass
- Deep hypothermia and intermittent circulatory arrest
- Heart is arrested
- Technically demanding surgery
- Pulmonary artery endarterectomy

Final Thoughts

- Growing population of acute PE
- · More will need advanced therapies
- More with circulatory collapse
 - ECMO before needing CPR
- · ?Earlier surgery?
- ?Role of catheter based interventions?
- · Should we be moving into CTEPH?