Spring Conference Showcase March 28, 2022

GRAND ROUNDS

ABSTRACT

Background

Patients with cardiovascular disease are reported to be more susceptible to severe forms of COVID-19. Previous studies also suggest that COVID-19 is a possible risk factor for developing cardiovascular complications. This study was designed to investigate the role of pre-existing and acquired cardiovascula disease in patients who died with a positive COVID-19 diagnosis in the largest health system in the Twin Cities (Allina Health). This study also aims to determine whether COVID-19 was the primary cause of mortality for patients with a positive COVID-19 diagnosis.

Methods

Retrospective chart review was used to analyze cardiovascular complications associated with COVID 19 mortality. Patients who were admitted from 3/1/2020 to 12/31/2020 and died in a metro Allina hospital with a positive COVID-19 diagnosis were included. Cause of death was adjudicated by at least 2 health professionals and was determined through hospital notes, discharge summaries, and labs.

Results

In patients who died primarily of COVID-19, 84% had a history of hypertension, 60% had a history of smoking, 51% had diabetes, 44% had a history of CAD, and 29% had a history of COPD. During hospitalization, 11% had an MI, 5% had a stroke, 41% had atrial fibrillation, and 44% had an elevated troponin level. Of the patients who died due to COVID-19, 56% were given antiviral agents, 72% were given dexamethasone, and 18% were given convalescent plasma. Of the COVID-19 deaths, 26 patients had a new MI and 10 had a new CVA/TIA.

Conclusions

Among COVID-19 positive patients who died in metro Allina hospitals, 82% died primarily of COVID-19 and 18% died primarily of other causes. Of the 18% who died of other causes, cardiovascular etiologies were the most common. Additionally, many pre-existing cardiovascular conditions and new in-hospital complications were found to be associated with deaths caused by COVID-19. When comparing the two groups, patients who died primarily of COVID-19 had a higher body mass index, as well as a higher incidence of COPD, obstructive sleep apnea, and history of smoking

CONTACT

Jay H. Traverse, MD Minneapolis Heart Institute Email: jay.traverse@allina.com

Cardiovascular Complications of COVID-19 and its True Mortality in a Large **Metropolitan Health System**

Table 2. Clinical characteristics of COVID-19 positive patients who died

Marissa E. Dulas¹, Jane E. Fox RN, CCRC¹, Brynn K. Okeson MS¹, Christian W. Schmidt MS¹, Jay H. Traverse MD^{1, 2} ¹Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis, Minneapolis, ²Minneapolis Heart Institute, Minneapolis, MN

RESULTS

Labs

(IQR)

(IQR)

(IQR)

Troponin, median (ng/ml)

Creatinine, median (mg/dl

BNP, median (pg/ml)

Antiviral agents (%)

Dexamethasone (%)

Hydroxychloroquine (%)

Convalescent plasma (%)

Supplemental oxygen (%)

Mechanical ventilation (%)

Time on ventilator (days)

Monoclonal antibodies

BIPAP/CPAP (%)

BACKGROUND

- The first case of COVID-19 in Minnesota was reported in March 2020.
- · Previous studies suggest that COVID-19 is a possible risk factor for cardiovascular complications such as myocarditis, stroke, acute myocardial infarction, and thromboembolic events While cardiovascular complications have been observed in COVID-19 natients in aggregate individual patient data is rarely reported.
- This study was designed to: Examine the role of pre-existing cardiovascular conditions in patients who died from COVID-19 within the largest health system in the Twin Cities
- (Allina Health) Measure and identify new cardiovascular complications that developed during the terminal hospitalization of patients who died with COVID-19. Determine the true mortality from COVID-19 in a cohort of consecutive
- patients diagnosed with the COVID-19 infection

METHODS

- Individual patient analysis was performed for all reported COVID-19 deaths from 3/1-12/31/2020 (n=455) within the three metro Allina hospitals.
- · Medical charts were reviewed with all pre-existing cardiac co-morbidities and procedures recorded and the cause of death adjudicated by at least two health care providers. Patients were classified as dying from COVID-19 if they had a positive COVID-19 test and CXR consistent with COVID-19 and suffered from progressive respiratory failure/ARDS (n=371). Patients who had incidental finding of a positive COVID-19 test or whose respiratory status had recovered from COVID-19 and died from other causes were classified as non-COVID-19 deaths (n= 84).

PATIENT POPULATION

Table 1. Demographic characteristics of COVID-19 positive patients who died

	Total: (n = 455)	COVID-19 Deaths (n = 371)	Non-COVID-19 Deaths (n = 84)	P-value
Women (%)	181 (40)	143 (39)	38 (45)	0.3
BMI, median (kg/m ²) (IQR)	29.6 (25.2, 34.8)	30.1 (25.5, 35.3)	27.8 (24.0, 32.4)	0.03
Obesity (%)	212 (47)	179 (48)	33 (39)	0.1
Age, median (yrs) (IQR)	75 (67, 83)	76 (68, 83)	74 (63, 82)	0.258
18-55 (%)	31 (7)	21 (6)	10 (12)	0.2
56-65 (%)	66 (15)	52 (14)	14 (16)	
66-75 (%)	135 (30)	111 (30)	24 (28)	
76-85 (%)	132 (29)	113 (31)	19 (22)	
>85 (%)	91 (20)	73 (20)	18 (21)	
Race				
White (%)	378 (84)	309 (84)	63 (84)	0.694
Black (%)	43 (10)	33 (9)	10 (12)	
Native American or Alaskan Native (%)	10 (2)	8 (2)	2 (2)	
Hawaiian or Pacific Islander (%)	2 (0.5)	2 (1)	0 (0)	
Asian (%)	15 (3)	14 (4)	1 (1)	
Ethnicity				
Non-Hispanic (%)	421 (93)	345 (93)	79 (94)	
Hispanic (%)	31 (7)	26 (7)	5 (6)	

	Total (n = 455)	COVID-19 Deaths (n = 371)	Non-COVID-19 Deaths (n = 84)	P-value
Hypertension (%)	381 (85)	308 (84)	73 (89)	0.244
Hx or current smoker (%)	251 (57)	213 (60)	38 (48)	0.064
Dyslipidemia (%)	344 (77)	279 (76)	65 (79)	0.556
History of CAD (%)	196 (44)	160 (44)	36 (44)	0.92
Diabetes (%)	224 (50)	187 (51)	37 (44)	0.263
COPD (%)	122 (27)	106 (29)	16 (20)	0.082
Chronic kidney disease (%)	211 (47)	171 (47)	40 (49)	0.736
Hx of dialysis (%)	22 (5)	17 (5)	5 (6)	0.618
Pulmonary hypertension (%)	71 (16)	61 (17)	10 (12)	0.321
PAD/PVD (%)	121 (27)	96 (26)	25 (30)	0.424
Hx of MI (%)	105 (23)	89 (24)	16 (20)	0.347
Hx of CABG (%)	45 (10)	34 (9)	11 (13)	0.291
Hx of PCI (%)	99 (22)	81 (22)	18 (21)	0.907
Hx of CHF* (%)	141 (33)	118 (33)	23 (29)	0.5
HFpEF (%)	88 (19)	70 (19)	18 (23)	0.5
HFrEF (%)	57 (13)	49 (14)	8 (10)	0.4
Unspecified (%)	14 (3)	13 (4)	1 (1)	0.5
Hx of CVA (%)	102 (23)	81 (22)	21 (26)	0.5
Hx of valve disease (%)	61 (14)	49 (13)	12 (15)	0.8
Hx of valve replacement (%)	20 (4)	17 (5)	3 (4)	>0.99
Hx of atrial fibrillation/atrial flutter (%)	160 (36)	130 (35)	30 (37)	0.8
Hx of obstructive sleep apnea (%)	123 (28)	112 (30)	11 (14)	0.004
Prior PPM, ICD or CRT-D/P (%)	55 (12)	49 (13)	6 (7)	0.1

Table 3. In-hospital comparison between COVID-19 deaths vs. other primary causes of death

	Total (n = 455)	COVID-19 Deaths (n = 371)	Non-COVID-19 Deaths (n = 84)	P-value
Length of stay (days)	10 (5, 17)	10 (5, 17)	7 (2, 17)	0.02
AKI during hospital (%)	271 (60)	223 (60)	48 (57)	0.6
MI in hospital (%)	56 (12)	42 (11)	14 (16)	0.2
CVA in hospital (%)	32 (7)	18 (5)	14 (16)	< 0.001
PCI in hospital (%)	8 (2)	2 (0.5)	6 (7)	0.001
DVT or PE (%)	46 (10)	38 (10)	8 (9)	0.8
In-hospital shock* (%)	128 (33)	117 (32)	31 (36)	0.389
Cardiogenic (%)	15 (3)	9 (2)	6 (7)	0.031
Septic (%)	84 (18)	66 (18)	18 (21)	0.474
Other/Unspecified (%)	54 (12)	45 (12)	9 (11)	0.686
ECCO2R (%)	9 (2)	9 (2)	0 (0)	0.2
ECMO (%)	12 (3)	9 (2)	3 (4)	0.476
CRRT or dialysis in hospital (%)	31 (7)	26 (7)	5 (6)	0.812
Atrial fibrillation/atrial flutter (%)	177 (39)	152 (41)	25 (29)	0.05

*Some patients had multiple types of CHF or in-hospital shock

DISCLOSURES The authors have no relevant financial or nonfinancial relationships to disclose.

other diagnoses that were designated as their primary cause of death.

including MI, stroke, pulmonary embolism, cardiogenic shock, and cardiac arrest

Table 4. Peak lab values for COVID-19 deaths vs. Non-COVID-19 deaths

Total

(n = 455

0.061

(0.020, 0.216)

199

(63, 528)

1.68

(1.16, 2.74)

Table 5. COVID-19 therapies for COVID-19 positive patients who died

Tota

(n = 455)

233 (51)

308 (68)

14 (3)

75 (16)

44 (10)

301 (66)

419 (92)

208 (46)

55 (26)

50 (24)

36 (17)

67 (32)

<5

5-10

11-15

Figure 1. Classification of total deaths

Primary Cause of Death

COVID-19 Non-COVID-19

>15

COVID-19 Deaths

(n = 371)

0.053

(0.020, 0.202)

187

(59, 486)

1.67

(1.18, 2.60)

OVID-19 Dea

(n = 371)

207 (56)

266 (72)

14 (4)

65 (18

39 (11)

265 (72)

349 (94)

173 (47)

41 (24

45 (26)

30 (17

57 (33

CONCLUSIONS

died in an Allina hospital, 82% had primarily COVID-19/ARDS-related deaths, and 18% had or acquired

· Pre-existing cardiovascular comorbidities and acquired cardiovascular complications are common among

ACKNOWLEDGMENTS

· Of the 18% that died of non-COVID-19 causes, cardiovascular-related death was the most common

patients who died from COVID-19 and patients who had COVID-19 but died from other cause · Patients who died of COVID-19 had a higher body mass index, as well as a higher incidence of COPD, obstructive sleep apnea, and history of smoking compared to non-COVID-19 deaths

 The authors would like to thank Abbott Northwestern Hospital Foundation, the Minneapolis Heart Institute Foundation, and the MHIE internship donors for their continued support.

In the largest health system in the metropolitan Minneapolis/St. Paul area, among COVID-19 patients who

Ion-COVID-19

0.09

(0.019. 0.713)

253

(81, 1315)

1.80

(1.10, 3.57)

Ion-COVID-19

eaths (n = 84)

26 (31)

42 (49)

0 (0)

10 (12)

5 (6)

36 (42)

70 (82)

35 (41)

14 (40)

5 (14)

6 (17)

10 (29)

Causes of Non-COVID-19 Mortality

eaths (n = 84)

0.2

0.1

0.5

-value

<0.001

< 0.001

0.083

0.194

0.19

< 0.001

< 0.001

0.19

Baseline Characteristics Nonresponders to CRT (n=42)				
Pre-optimization	Age	70.5 +/- 9.0		
	Male n (%)	31 (74%)		
	EF	31.7 +/- 4.5		
	LVEDV (ml)	157 +/- 48		
	LVESV (ml)	108 +/- 36		
	AUC (absolute value)	51 +/- 31		
	CRI (%)	50 +/- 24		
	Time since implant (years)	4.1 +/- 3.9		
Pre-CRT	EF	28.1 +/- 8.0		
	QRS duration (ms)	159 +/- 24		
	QRS morphology (LBBB/IVCD/RVp)	(23/12/7)		
	AUC (native)	-110 +/- 65		

9

	Coauthors	
Spyridon Kostantinis, MD	• Gerald S. Werner, MD, PhD	• Khalid Tammam, MD, PhD
 Judit Karacsonyi, MD, PhD 	Margaret McEntegart, MD, PhD	Nidal Abi Rafeh
 Ilias Nikolakopoulos, MD 	Seung-Whan Lee, MD, PhD	Kevin J Croce, MD, PhD
 Evangelia Vemmou, MD 	• Jaikirshan J. Khatri, MD	Farouc A Jaffer, MD, PhD
 Bavana V. Rangan, BDS, MPH 	Scott A Harding, MD	• Eugene B. Wu, MD
 <u>M. Nicholas Burke, MD</u> 	Alexandre Avran, MD, PhD	Etsuo Tsuchikane MD, PhD
<u>Santiago Garcia, MD</u>	Darshan Doshi, MD, MS	Carlo Di Mario, MD, PhD
Emmanouil S. Brilakis, MD, PhD	• Hsien-Li Kao, MD	Alfredo R Galassi, MD
 Khaldoon Alaswad, MD 	Georgios Sianos, MD, PhD	Andrea Gagnor, MD
 Dimitrios Karmpaliotis, MD, PhD 	 Masahisa Yamane, MD 	Paul Knaapen, MD, PhD
 Wissam A Jaber, MD 	Anastasios Milkas, M.D. PhD	 Yangsoo Jang, MD, PhD
 William Nicholson, MD 	Lorenzo Azzalini, MD, PhD	Byeung Keuk Kim
 Stephane Rinfret, MD, SM 	Roberto Garbo, MD	Paul Poommipanit, MD
 Kambis Mashayekhi, MD 		

eapolis t Institute dation GRAND ROUNDS

References
 1. Werner GS, Martin-Yuste V, Hildick-Smith D, Boudou N, Sianos G, Gelev V, Rumoroso JR, Erglis A, Christiansen EH, Escaned J, di Mario C, Hovasse T, Teruel L, Bufe A, Lauer B, Bogaerts K, Goicolea J, Spratt JC, Gershlick AH, Galassi AR, Louvard Y. A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions. <i>European heart journal</i> 2018;39:2484-2493.
 2. Obedinskiy AA, Kretov EI, Boukhris M, Kurbatov VP, Osiev AG, Ibn Elhadj Z, Obedinskaya NR, Kasbaoui S, Grazhdankin IO, Prokhorikhin AA, Zubarev DD, Biryukov A, Pokushalov E, Galassi AR, Baystrukov VI. The IMPACTOR-CTO Trial. JACC Cardiovascular interventions 2018;11:1309-1311.
 3. Juricic SA, Tesic MB, Galassi AR, Petrovic ON, Dobric MR, Orlic DN, Vukcevic VD, Stankovic GR, Aleksandric SB, Tomasevic MV, Nedeljkovic MA, Beleslin BD, Jelic DD, Ostojic MC, Stojkovic SM. Randomized Controlled Comparison of Optimal Medical Therapy with Percutaneous Recanalization of Chronic Total Occlusion (COMET-CTO). International heart journal 2021;62:16-22.
 4. Henriques JP, Hoebers LP, Råmunddal T, Laanmets P, Eriksen E, Bax M, Ioanes D, Suttorp MJ, Strauss BH, Barbato E, Nijveldt R, van Rossum AC, Marques KM, Elias J, van Dongen IM, Claessen BE, Tijssen JG, van der Schaaf RJ. Percutaneous Intervention for Concurrent Chronic Total Occlusions in Patients With STEMI: The EXPLORE Trial. <i>Journal of the American College of Cardiology</i> 2016;68:1622-1632.
 5. Lee SW, Lee PH, Ahn JM, Park DW, Yun SC, Han S, Kang H, Kang SJ, Kim YH, Lee CW, Park SW, Hur SH, Rha SW, Her SH, Choi SW, Lee BK, Lee NH, Lee JY, Cheong SS, Kim MH, Ahn YK, Lim SW, Lee SG, Hiremath S, Santoso T, Udayachalerm W, Cheng JJ, Cohen DJ, Muramatsu T, Tsuchikane E, Asakura Y, Park SJ. Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion. <i>Circulation</i> 2019;139:1674-1683.
 6. Mashayekhi K, Nührenberg TG, Toma A, Gick M, Ferenc M, Hochholzer W, Comberg T, Rothe J, Valina CM, Löffelhardt N, Ayoub M, Zhao M, Bremicker J, Jander N, Minners J, Ruile P, Behnes M, Akin I, Schäufele T, Neumann FJ, Büttner HJ. A Randomized Trial to Assess Regional Left Ventricular Function After Stent Implantation in Chronic Total Occlusion: The REVASC Trial. JACC Cardiovascular interventions 2018;11:1982-1991.
 7. Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, Bittl JA, Cohen MG, DiMaio JM, Don CW, Fremes SE, Gaudino MF, Goldberger ZD, Grant MC, Jaswal JB, Kurlansky PA, Mehran R, Metkus TS, Jr., Nnacheta LC, Rao SV, Sellke FW, Sharma G, Yong CM, Zwischenberger BA. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. <i>Circulation</i> 2022;145:e4-e17.
Minneapolis Heart Institute Foundation GRAND ROUNDS
.7

Variable	Overall	Perforation	No perforation	D volue
vanable	n=6,422	n=326, 5.1%	n=6,096, 94.9%	Pvalue
Clinical characteris	stics			
Age (years)	64±10	68±9	64±10	0.0001
Men	81%	79%	81%	0.488
BMI (kg/m2)	31±8	29±5	31±8	0.001
Hypertension	89%	94%	89%	0.003
Diabetes	42%	36%	42%	0.032
Dyslipidemia	85%	84%	85%	0.685
Prior MI	45%	52%	45%	0.031
Prior CABG	28%	37%	27%	0.0002
Prior PCI	60%	69%	59%	0.0004
LVEF (%)	51±12	50±13	51±12	0.505

n=6 422	000		
11 0,422	n=326	n=6,096	r value
eristics			
			0.076
52%	59%	52%	
27%	22%	27%	
20%	17%	20%	
35%	53%	33%	<0.0001
29±18	32±19	29±18	0.003
18%	29%	17%	<0.0001
16%	16%	16%	0.751
	52% 27% 20% 35% 29±18 18% 16%	52% 59% 27% 22% 20% 17% 35% 53% 29±18 32±19 18% 29% 16% 16%	52% 59% 52% 27% 22% 27% 20% 17% 20% 35% 53% 33% 29±18 32±19 29±18 18% 29% 17% 16% 16% 16%

Table 3. Procedural characteristics

Variable	Overall	Perforation	No perforation	Ryalua
vanable	n=6,422	n=326	n=6,096	P value
Procedural characteris	tics			
Successful Crossing				<0.0001
Strategy				<0.0001
• AWE	56%	24%	58%	
 Retrograde 	18%	29%	18%	
• ADR	12%	13%	12%	
 None 	13%	34%	12%	
IVUS used	43%	48%	43%	0.104
Procedure time (min)	115 (75, 170)	177 (125, 237)	112 (73, 165)	<0.0001
Fluoroscopy time (min)	42 (26, 68)	71 (50, 101)	41 (25, 66)	<0.0001
Radiation dose (air kerma, mGy)	2.2 (1.3, 3.7)	3.0 (1.9, 4.8)	2.1 (1.2, 3.6)	<0.0001
Contrast volume (ml)	205 (150, 300)	250 (175, 350)	200 (150, 290)	<0.0001
Minneapolis Heart Institute	GRAND awe	= antegrade wire escalation; ADR = ant	egrade dissection and re-entry; IVUS =	1

Variable	Overall	Perforation	No perforation	Dyalua	
variable	n=6,422	n=326	n=6,096	Pvalue	
Procedural outcome	S				
Technical Success	87%	66%	88%	<0.0001	
Procedural Success	85%	55%	87%	<0.0001	
MACE	2.1%	17.8%	1.3%	<0.0001	
Death	0.5%	4%	0.3%	<0.0001	
MI	0.6%	1.8%	0.6%	0.005	
Emergency CABG	0.1%	0.9%	0.03%	0.0001	
Re-PCI	0.2%	1.2%	0.2%	0.0001	
Stroke	0.2%	0.6%	0.2%	0.051	
Pericardiocentesis	1%	13%	0.3%	<0.0001	
Minneapolis Heart Institute Foundation GRAND ROUNDS MACE = Major Adverse Cardiovascular Events; MI = Myocardial Infarction; CABG = Coronary Artery Bypass Grafting; PCI = Percutaneous Coronary Intervention.					

Table	1 – Baseline Clinica	l and Imaging Chara	cteristics		
	Patient 1	Patient 2	Patient 3	Patient 4	
Sex	Female	Female	Female	Female	
Age	68	49	77	67	
Peak troponin (ng/mL)	1.998	11.097	4.257	0.228	
Ballooning Type	Apical	Apical	Apical	Apical	
Left Ventricular EF % (transthoracic echo)	44	45	34	30	
Type of TS stressor	Emotional	Emotional	Emotional	Emotional	
Acute Stress Global MBF (>2.0)	2.34	2.23	2.23	2.25	
Acute Rest Global MBF (0.8-1.0)	1.30	0.80	1.20	0.98	
Acute Global Myocardial perfusion					
Reserve (MPR) (>2.4)	1.80	2.79	1.86	2.30	
Acute Basal Stress MBF	3.00	2.35	2.10	2.82	
Acute Apical Stress MBF	2.00	1.48	1.40	1.70	
Acute Stress Basal/Apex Ratio	1.50	1.59	1.50	1.66	
Acute Rest Basal MBF	1.50	0.97	1.30	0.95	
Acute Rest Apical MBF	1.30	0.80	0.90	0.81	
Acute Rest Basal/Apical Ratio	1.15	1.21	1.44	1.17	
Recovery Stress Global MBF (>2.0)	3.52	2.85	3.62		
Recovery Rest Global MBF (0.8-1.0)	1.04	0.70	1.30		
Recovery Global MPR (>2.4)	3.38	4.07	2.78		
Recovery Basal Stress MBF	3.50	2.50	4.15		
Recovery Apical Stress MBF	3.20	2.50	3.23		
Recovery Stress Basal/Apex Ratio	1.09	1.00	1.28		
Recovery Rest Basal MBF	1.02	0.70	1.20		
Recovery Rest Apical MBF	1.05	0.70	1.20		
Recovery Rest Basal/Apical Ratio	0.97	1.00	1.00		

Deformation of Self-expanding Transcatheter Aortic Valve Prostheses for Hypo-Attenuating Leaflet Thickening

Miho Fukui, Vinayak N. Bapat, Santiago Garcia, Hirotomo Sato, Maurice Enriquez-Sarano, John R. Lesser, João L. Cavalcante, and Paul Sorajja Minneapolis Heart Institute Foundation, Minneapolis, Minnesota, USA

BACKGROUND

 Mechanistic insight into causative factors for HALT in TAVR prostheses remains limited

STUDY AIM

 To determine relation between prostheses deformity in self-expanding TAVR valves and occurrence of HALT

METHODS

- · 213 native AS patients prospectively examined with cardiac CTA
- screening for HALT 30 days after TAVR
- · Study exclusions were valve-in-valve procedure, inadequate image quality for transcatheter heart valve (THV) or CT unavailable due to death or risk of CIN

(minor diameter)2 1 – (major diameter)2

- sion = sum of the difference between 120° and each angle formed by each prosthetic leaflet
- Neo-sinus volume = the volume above the THV leaflets within the THV frame.

Baseline Characteristics							
Clinical Characteristics	HALT (n=35)	No HALT(n=178)	р				
Age (years)	84 (80-87)	82 (77-87)	0.25				
Male – no. (%)	17 (49)	90 (51)	0.83				
Diabetes mellitus - no. (%)	4 (11)	55 (31)	0.02				
Hypertension - no. (%)	29 (83)	154 (87)	0.58				
Atrial fibrillation/flutter – no. (%)	8 (23)	57 (32)	0.28				
Coronary artery disease – no. (%)	20 (57)	88 (49)	0.41				
eGFR (mL/min/1.73 m ²)	59 (48-72)	67 (54-75)	0.11				
LVEF (%)	60 (55-65)	60 (55-65)	0.90				
Aortic valve area index (cm ² /m ²)	0.42 (0.36-0.48)	0.39 (0.33-0.46)	0.19				
STS-PROM score (%)	3.9 (2.8-5.5)	3.2 (1.9-5.3)	0.13				
TAVR procedure							
Transfemoral Access – no. (%)	33 (94)	167 (94)	0.92				
Pre-dilatation – no. (%)	11 (31)	43 (24)	0.37				
Post-dilatation – no. (%)	1 (3)	6 (3)	0.88				
Medications at discharge							
Antiplatelet therapy – no. (%)	34 (97)	176 (99)	0.43				
Anticoagulant therapy – no. (%)	6 (17)	64 (36)	0.03				

Cardiac CTA Characteristics						
	HALT (n=35)	No HALT (n=178)	р			
Baseline variables						
Bicuspid aortic valve – no. (%)	2 (6)	3 (2)	0.15			
Aortic valve calcium score (AU)	1828 (1462-3181)	2324 (1557-3258)	0.44			
Post-procedural variables						
Eccentricity index at						
Frame outflow	0.31 (0.18-0.42)	0.30 (0.22-0.37)	0.52			
Leaflet outflow	0.29 (0.20-0.38)	0.26 (0.19-0.31)	0.05			
Prosthesis waist	0.38 (0.32-0.44)	0.31 (0.23-0.43)	0.008			
Leaflet inflow	0.54 (0.49-0.61)	0.42 (0.35-0.55)	<0.001			
Native annulus	0.55 (0.47-0.64)	0.49 (0.37-0.59)	0.03			
Frame inflow	0.56 (0.47-0.65)	0.51 (0.38-0.60)	0.06			
Asymmetric leaflet expansion	18 (10-24)	10 (6-14)	<0.001			
Neo-sinus volume index	0.98 (0.94-1.00)	1.01 (0.98-1.04)	<0.001			
Implant depth (mm)	5.0 (4.0-6.6)	5.3 (3.6-7.1)	0.84			
Canting (mm)	2.3 (1.5-4.0)	2.3 (1.3-3.7)	0.93			
Commissure malalignment						
Right coronary – no. (%)	6 (17)	49 (28)	0.20			
Left coronary – no. (%)	8 (23)	45 (25)	0.76			
LVEF by CT (%)	63 (42-67)	58 (50-65)	0.13			
LVSVI by CT (ml/m ²)	45 (34-50)	47 (39-52)	0.43			

Multivariable Regression Analysis for HALT					
	Model 1		Model 2		
	OR (95% CI)	р	OR (95% CI)	р	
Anticoagulant therapy at discharge	0.18 (0.05-0.65)	0.009			
Valve size (26-, 29-, 34 -mm)			0.46 (0.24-0.85)	0.01	
Eccentricity at leaflet inflow (>0.44)	3.74 (1.25-11.1)	0.02	4.23 (1.44-12.5)	0.009	
Asymmetric leaflet expansion (per 1-degree)	1.15 (1.07-1.23)	<0.001	1.13 (1.06-1.20)	<0.001	
Neo-sinus volume index (per 0.1)	0.31 (0.13-0.75)	0.01	0.32 (0.13-0.76)	0.01	

RESULTS

<mark>9</mark> 1.00

0.80

0.00

0.20

TAVR Prosthesis Deformation and HALT

r = -0.33

p < 0.001

0.40

0.60

CONCLUSIONS

- TAVR prosthesis deformation (i.e. eccentricity, asymmetric leaflet expansion, neo-sinus volume) might explain HALT occurrence following selfexpanding TAVR prosthesis.
- These data may have implications for both design and deployment techniques to improve clinical outcomes with TAVR.
- 0.80 1.00 Eccentricity at leaflet inflow <Disclosures> The authors have no disclosures related to this study to report.

35 of 35