MHIF Research Highlights: May 2020

Thanks to the physicians participating in the five-part, e-series connecting our physicians to the community!

Drs. Steven Bradley, Paul Sorajja, Retu Saxena, Peter Eckman, John Zakaib **mplsheart.org/on-the-pulse**

Do you have a perspective about your world during the current pandemic you'd be willing to publish on the MHIF website? Please let us know by connecting with Jesse Hicks—jhicks@mhif.org

Interested in MHIF Updates During COVID-19? Visit mplsheart.org/coronavirus/

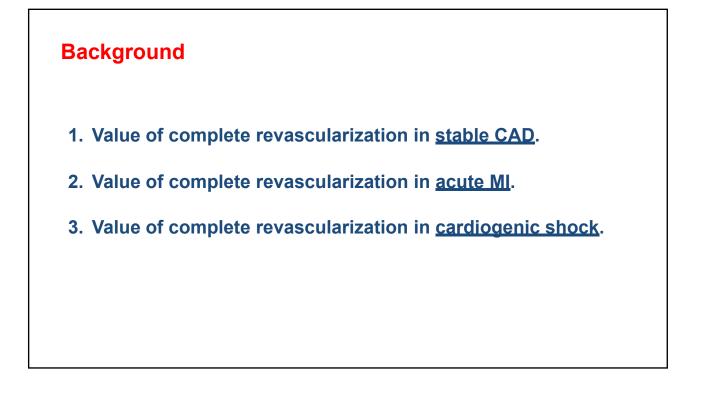
MHIF FEATURE:

HemoLung Emergency Use of ECCO2R Dr. Saavedra-Romero

CONTACT:

Kari Williams - <u>kari.williams@allina.com</u> Carina Benson - <u>carina.benson@allina.com</u>

MHIF Research Tiger Team ready to support HemoLung with 24/7 onsite research coverage!



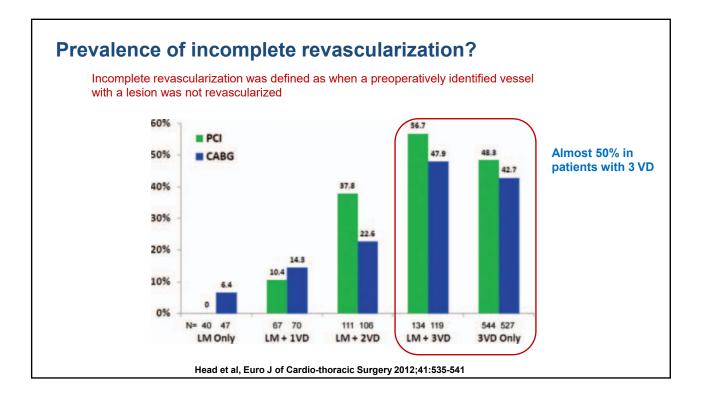
Mohamed A. Omer, MD, MSc Interventional Cardiology Fellow Abbott Northwestern Hospital

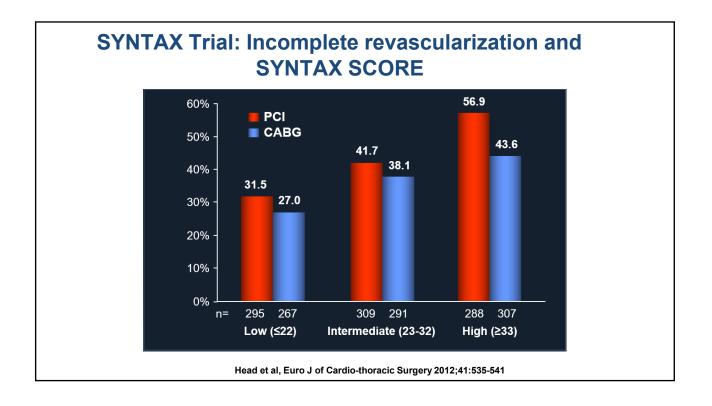
DISCLOSURE

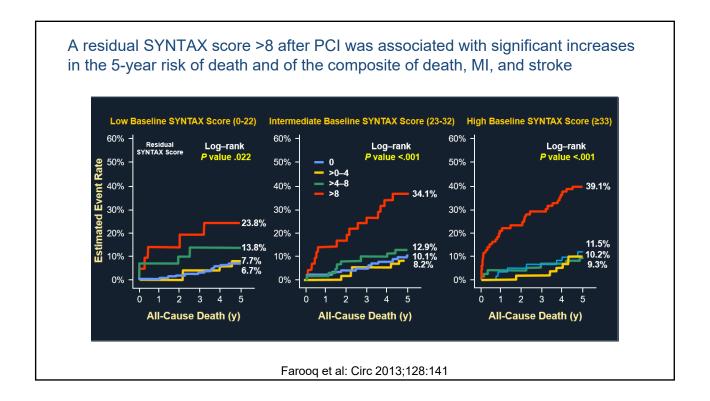
NONE

1- Value of complete revascularization in stable CAD

Background

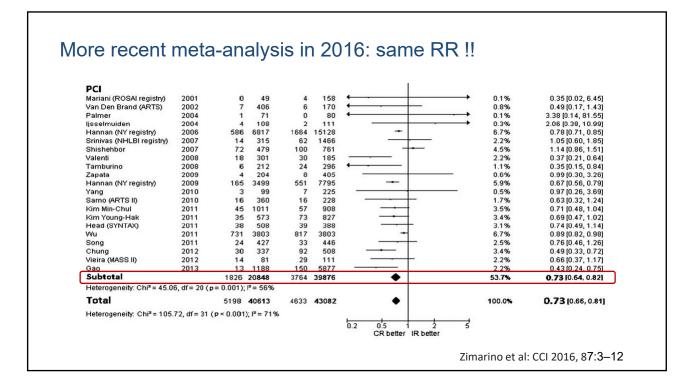

 Patients undergoing PCI are often found to have multivessel CAD, with 1 or more angiographically significant non-culprit lesions.

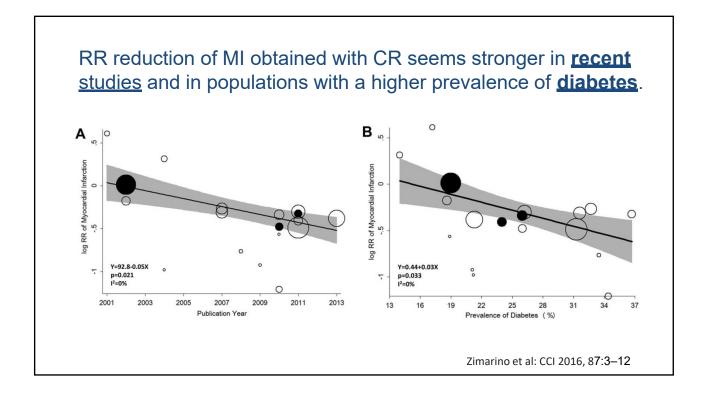

- There is uncertainty on how best to manage these non-culprit lesions:
 - Routinely revascularize them with PCI?
 - Manage according to anatomical or functional assessment?
 - Manage them conservatively with guideline-directed medical therapy alone?

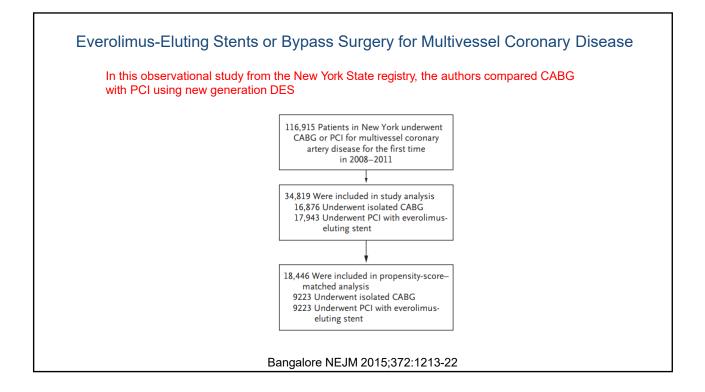


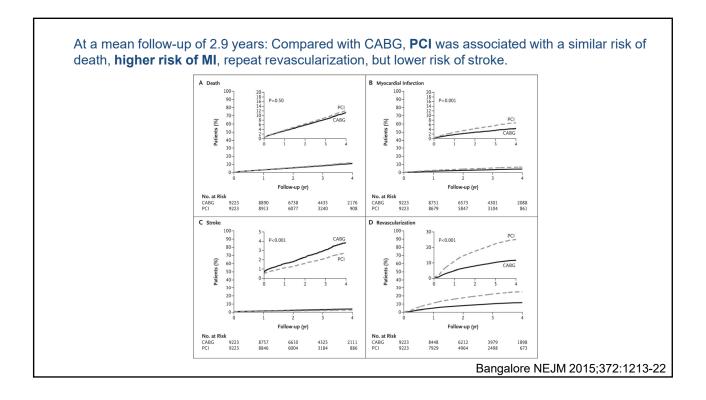
- 1. Are there standardized definitions for CR/IR available?
- 2. Is CR a fundamental tenet or is it just a worthwhile objective, for which benefits outweigh the risks? Does it have the same implications for surgeons vs interventional cardiologists
- 3. Should CR become the standard for comparison of the efficacy of different procedures, eg, should the ability to achieve CR vs IR be used as a criterion to select specific therapeutic options such as PCI vs CABG?
- 4. Do we perform CR in those patients in whom we can, --and only perform IR when CR is not feasible?
- 5. Has the FAME⁷ study reframed the issues with regard to CR vs IR?
- 6. Does the effect of CR vs IR depend on the specific arterial segment involved, eg, is CR more important when the LAD is involved?

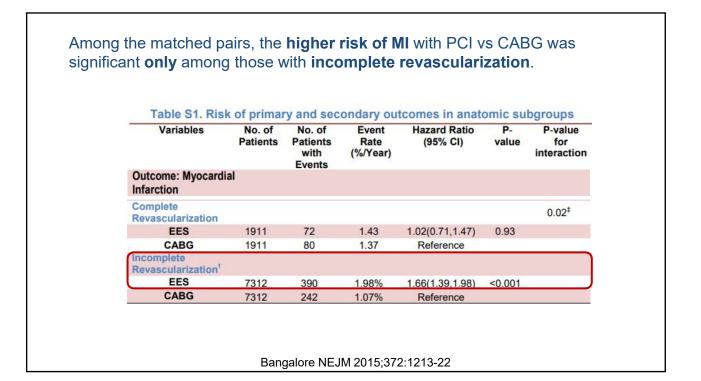
Gössl et al: Circ Cardiovasc Interv 2012

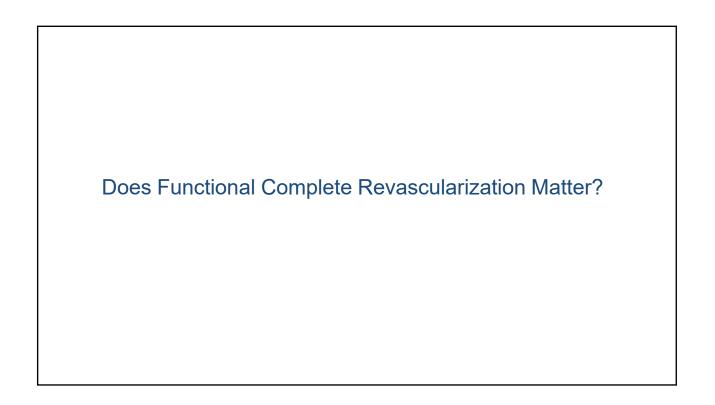


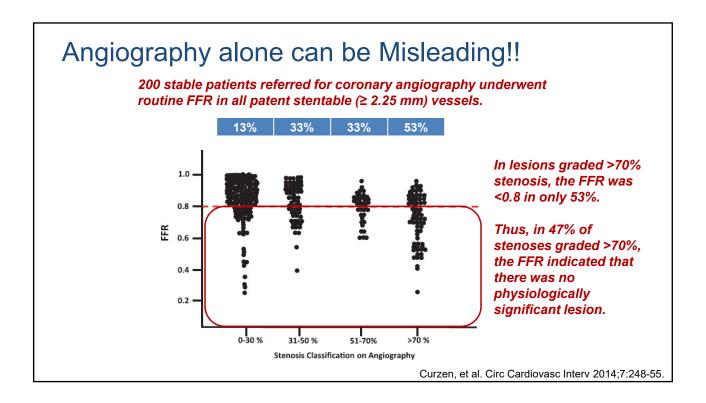

Outcomes After Complete Versus Incomplete Revascularization of Patients with MVD

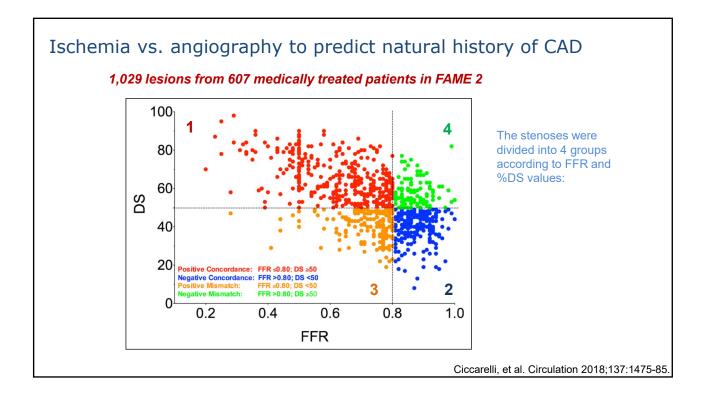

- Meta-analysis of 35 studies that compared CR vs IR.
- Roughly half of these patients received CR (50.5%).
- IR was more common following PCI vs CABG (56% vs 25%).
- CR was associated with lower long-term mortality as well as reduced MI and repeat coronary revascularization.
- Irrespective of revascularization modality, mortality benefit in regards to CR was consistent across all studies.

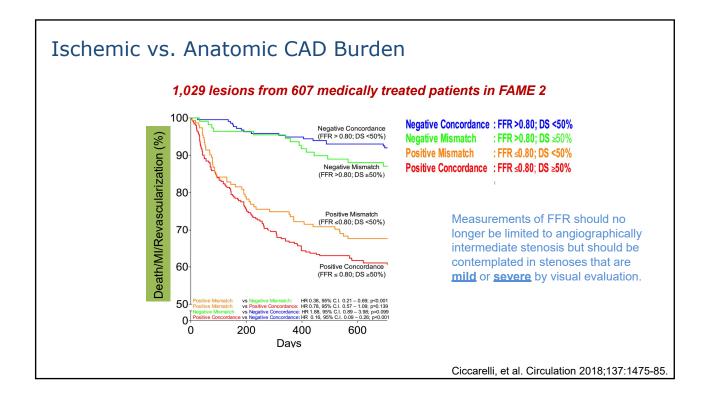

Garcia S et al. J Am Coll Cardiol. 2013;62(16):1421-1431.

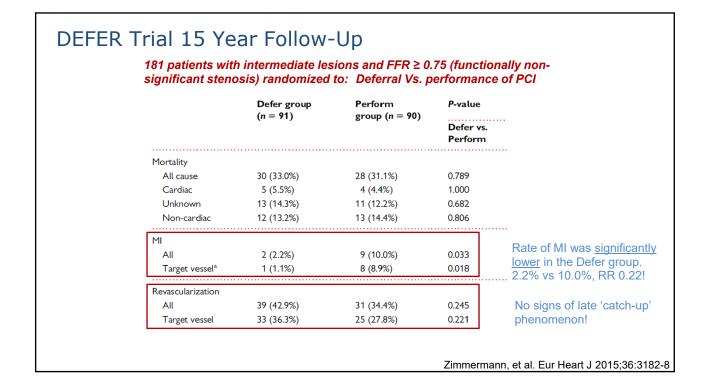


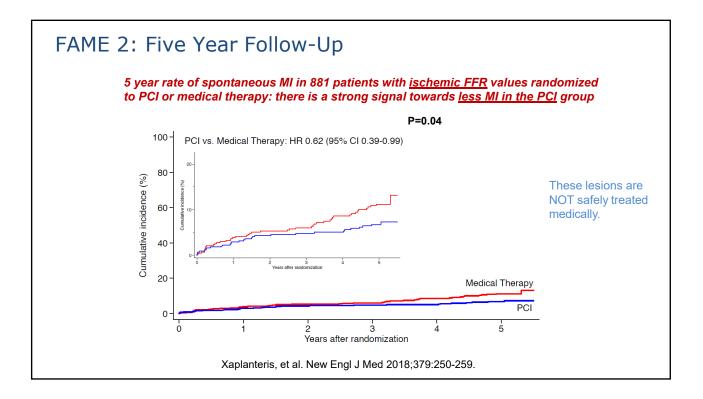


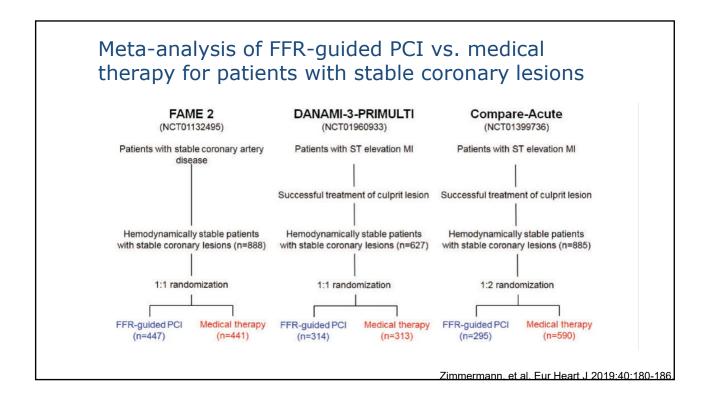


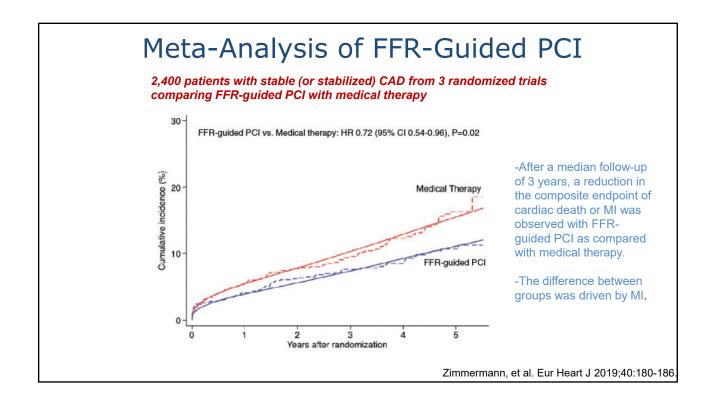


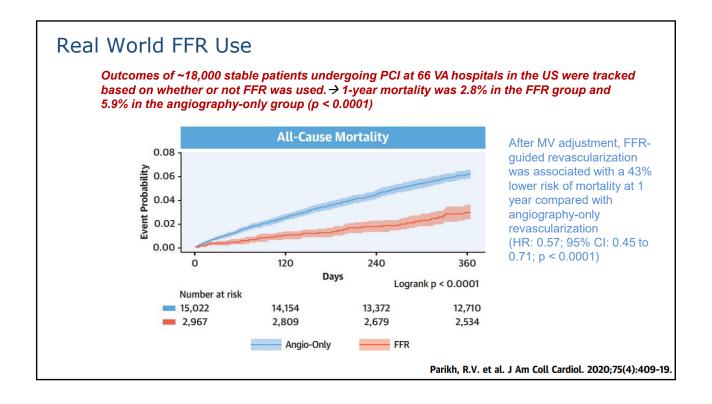


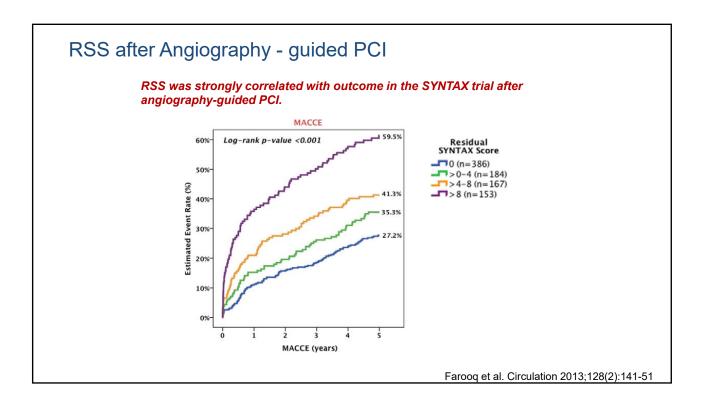


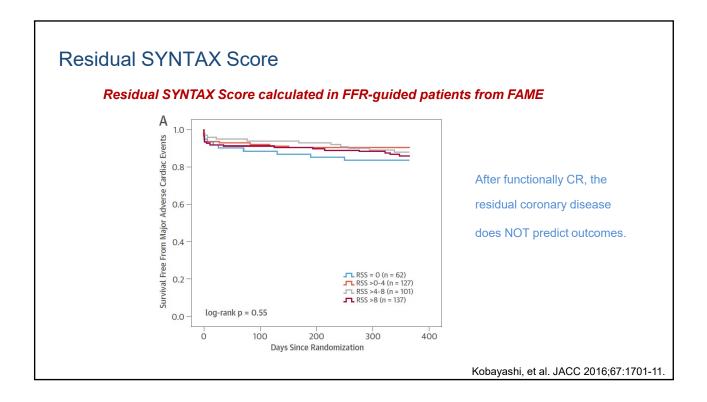


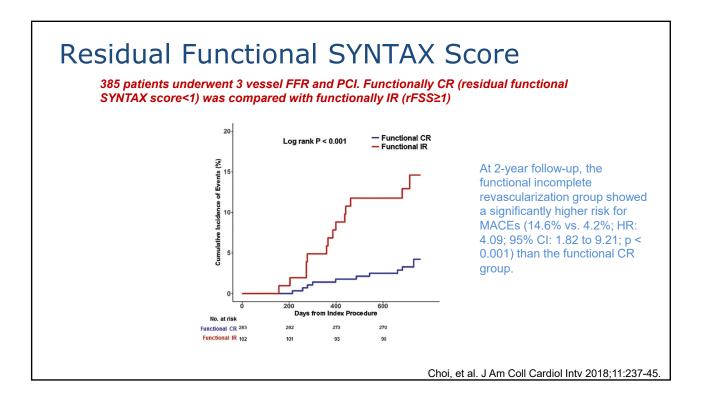


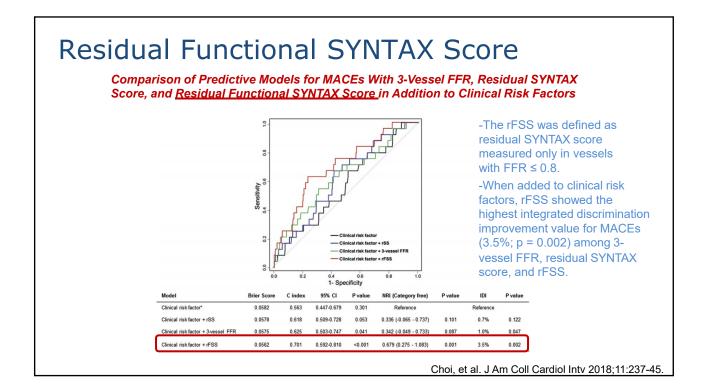


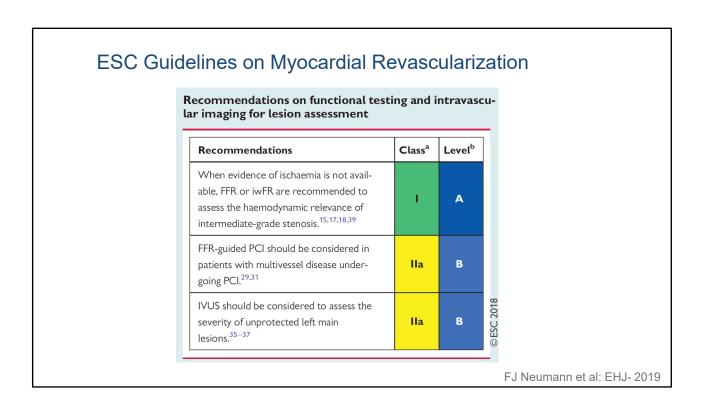


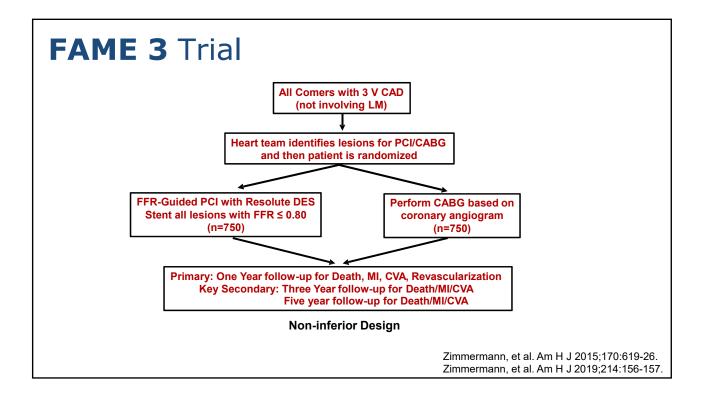


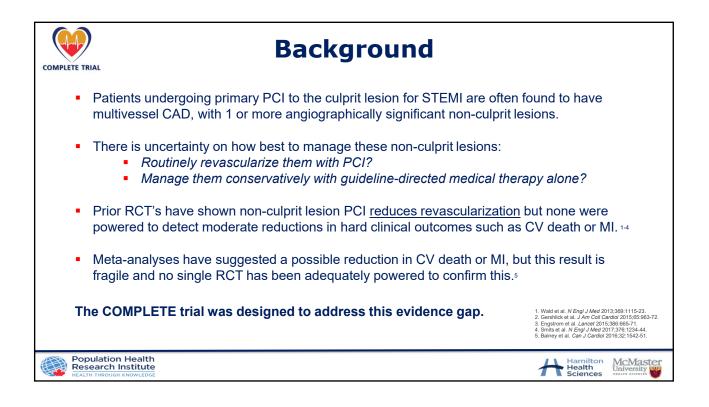






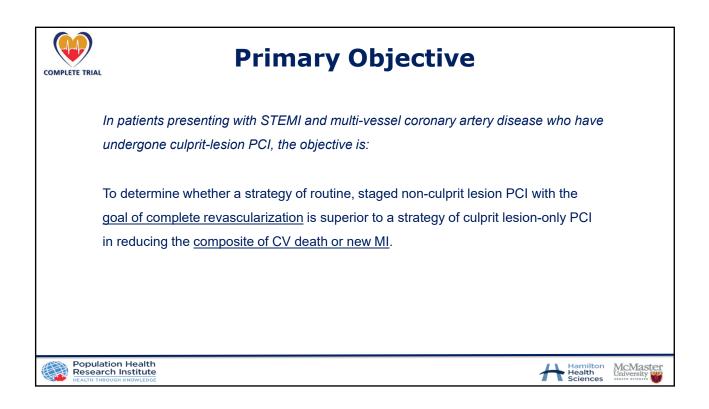


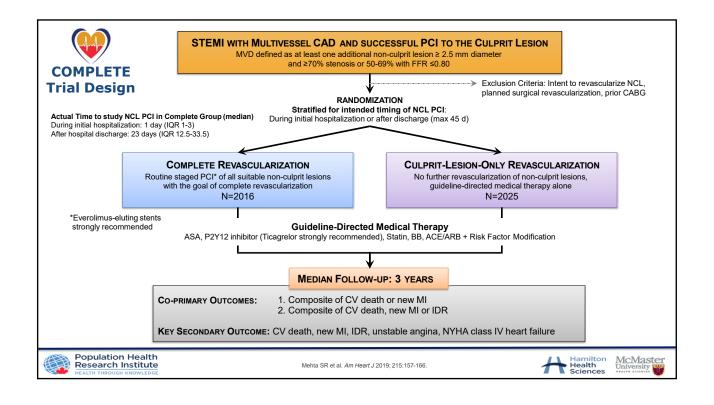


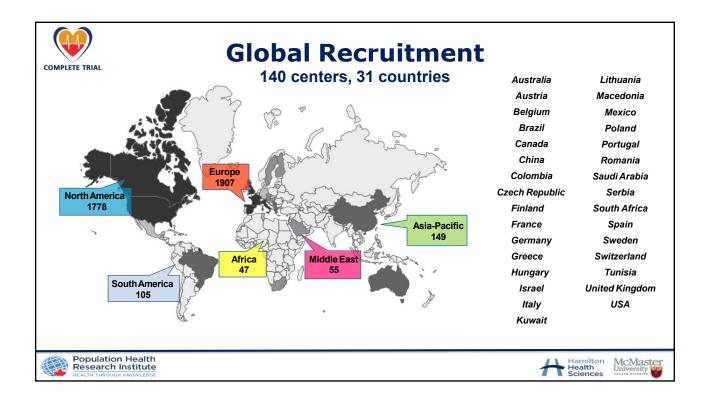


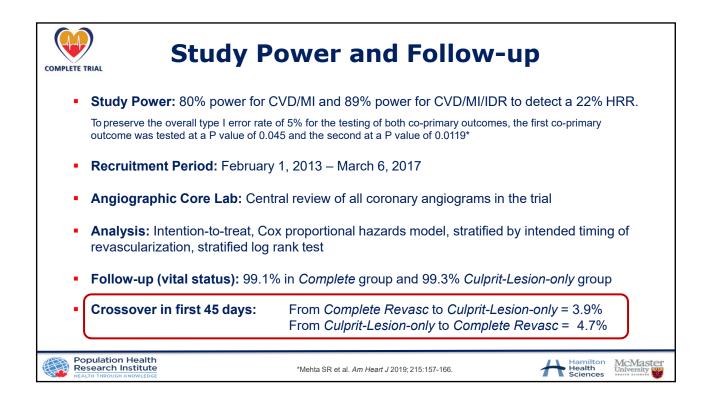
– Patient	Clinical Gold Standard – Patient Outcome Studies in Specific Subgroups							
Patient Subgroup	FFR	NHPR	Key Points					
Stable IHD, Low Risk	~	V	Defer, Define-Flair, SwedeHeart					
STEMI / NSTEMI	~	×	FFR valid in non-culprit ACS vessel if <0.8					
SVG Assessment	~	×	Physiology accurate, but biology of vein graft deterioration is critical role beyond "ischemia"					
Ostial lesion, Left Main	~	×	IV hyperemia and caution for left main assessment and proximal LCX or LAD disease					
Bypass Graft Failure	~	×	Early rate of bypass graft closure in non- physiologically significant vessels					
Serial Lesions	?	?	iFR pullback looks promising					
Aortic Stenosis & TAVR	?	?	With increasing coronary blood flow after successful AVR, decrease in FFR					
			Morton Kern:					

Conclusion

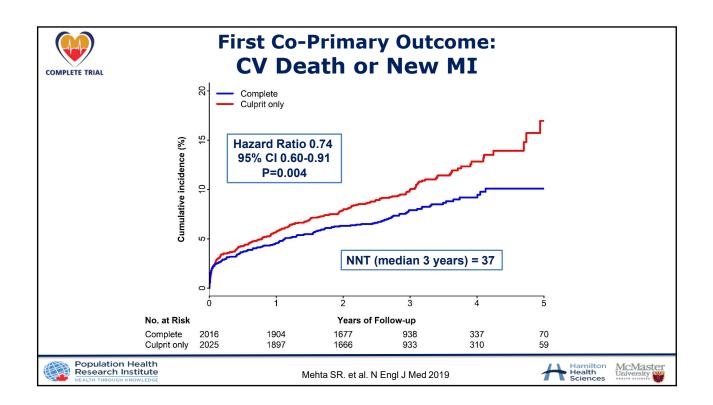

- <u>Anatomic complete</u> revascularization is associated with improved outcomes after PCI.
- <u>Anatomic complete</u> revascularization with PCI compares favorably with CABG.
- <u>Functionally complete</u> revascularization guided by FFR may result in <u>even better</u> outcomes with PCI.
- We are waiting for the results of the FAME 3 trial next year.

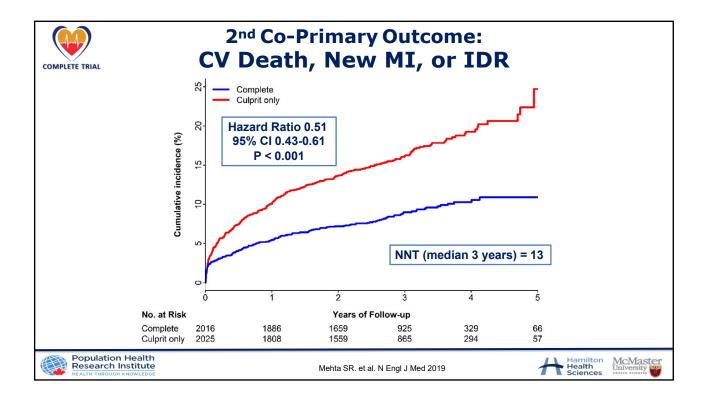

2- Value of complete revascularization in AMI <u>without</u> cardiogenic shock




Tria	al	Same-sitting or Staged	Sample Size	
Di N	Aario 2004	Index	69	
Poli	ti 2009	Index or staged	149	
Gha	ini 2012	Staged (FFR guided)	119	
PRA	MI 2013 ¹	Index	465	
Cvlp	orit 2014 ²	Index or staged	296	
DAN	VAMI-3 2015 ³	Staged	627	
PRA	GUE 13	Staged	214	
Exp	lore	Staged (CTO)	300	
CON	MPARE-ACUTE ⁴	Mainly index	885	 Wald et al. N Engl J Med 2013;369:1115-23 Gershlick et al. J Am Coll Cardiol 2015;65:9 Engstrom et al. Lancet 2015;386:665-71. Smits et al. N Engl J Med 2017;376:1234-44

٦

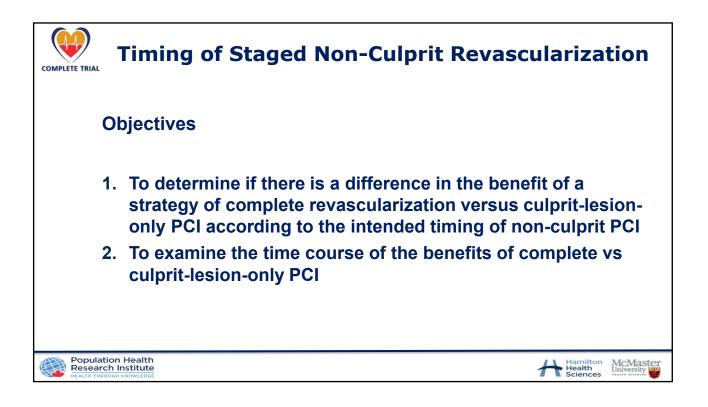


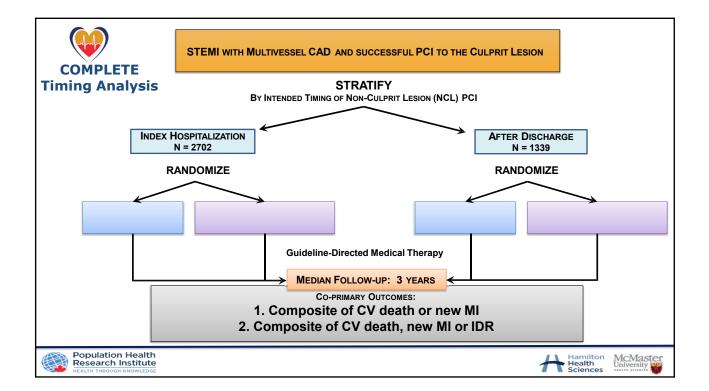


	Complete N=2016	Culprit-only N=2025		Complete N=2016	Culprit-only N=2025
Age (yrs)	61.6	62.4	Sx onset to Culprit PCI (%)	
Gender (% male)	80.5	79.1	<6 hours	69.4	67.1
Diabetes (%)	19.1	19.9	6~12 hours	16.1	17.7
Chronic renal insuff. (%)	2.0	2.3	>12 hours	14.5	15.3
Prior MI (%)	7.3	7.6	Discharge Meds (%)		
Current smoker (%)	40.6	38.9	ASA	99.8	99.5
Hypertension (%)	48.7	50.7	P2Y12 Inhibitor	99.4	99.7
Dyslipidemia (%)	37.9	39.4	Ticagrelor	64.4	63.3
Prior PCI (%)	7.0	7.0	Prasugrel	9.6	8.3
Prior stroke (%)	3.2	3.1	Clopidogrel	25.6	28.2
Hemoglobin A1C	6.3	6.3	Beta blocker	88.1	89.1
LDL (mmol/L)	3.1	3.1	ACEi/ARB	85.5	84.6
Creatinine (µmol/L)	84.7	85.2	Statin	98.2	97.2

	Complete N=2016	Culprit-only N=2025		Complete N=2016	Culprit-on N=2025
Index PCI for STEMI			NCL diameter	2.8 mm	2.9 mm
Primary	91.9%	93.1%	Mean NCL stenosis (visual)	79.3%	78.7%
Pharmaco-invasive	3.2%	3.0%	NCL stenosis (visual)		
Rescue	4.9%	3.9%	50-69% and FFR<0.80	0.8%	0.6%
Radial access	80.8%	80.7%	70-79%	41.3%	45.1%
Residual diseased vessels			80-89%	33.5%	32.6%
1	76.1%	77.1%	90-99%	22.3%	19.7%
≥2	23.9%	22.9%	100%	2.1%	2.0%
NCL location			SYNTAX score (Core Lab)		
Left main	0.4%	0.1%	Baseline	16.3	16.0
LAD	38.0%	41.2%	Culprit lesion specific	8.8	8.6
Proximal LAD	9.8%	10.4%	Non-culprit lesion specific	4.5	4.5
Mid LAD	21.7%	23.7%	Residual (after index PCI)	7.2	7.0
Circumflex	36.4%	35.6%	, , , , , , , , , , , , , , , , , , , ,		
Proximal LAD	9.8% 21.7%	10.4% 23.7%		4.5	

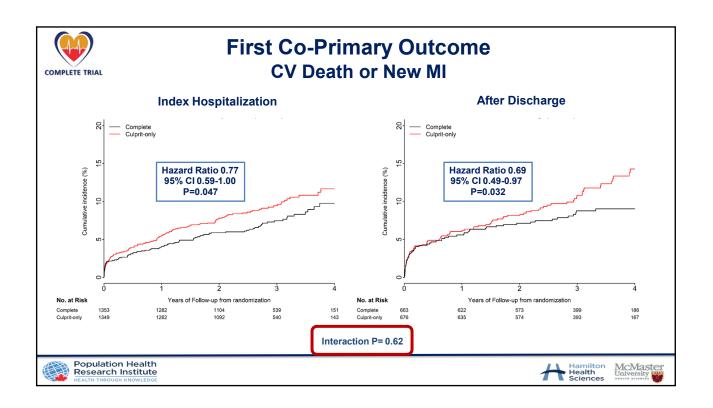
	Complete N=2016	Culprit-only N=2025		Complete N=2016	Culprit-onl N=2025
Index PCI for STEMI			NCL diameter	2.8 mm	2.9 mm
Primary	91.9%	93.1%	Mean NCL stenosis (visual)	79.3%	78.7%
Pharmaco-i Rescue Radial acces	•		on was achieved in YNTAX score = 0)	90.1%	0.6%
Residual diseased ve	essels		80-89%	33.5%	32.6%
1	76.1%	77.1%	90-99%	22.3%	19.7%
≥2	23.9%	22.9%	100%	2.1%	2.0%
NCL location			SYNTAX score (Core Lab)		2.070
Left main	0.4%	0.1%	Baseline	16.3	16.0
LAD	38.0%	41.2%	Culprit lesion specific	8.8	8.6
Proximal LAD	9.8%	10.4%	Non-culprit lesion specific	4.5	4.5
Mid LAD	21.7%	23.7%	Residual (after index PCI)	7.2	7.0
Circumflex	36.4%	35.6%			

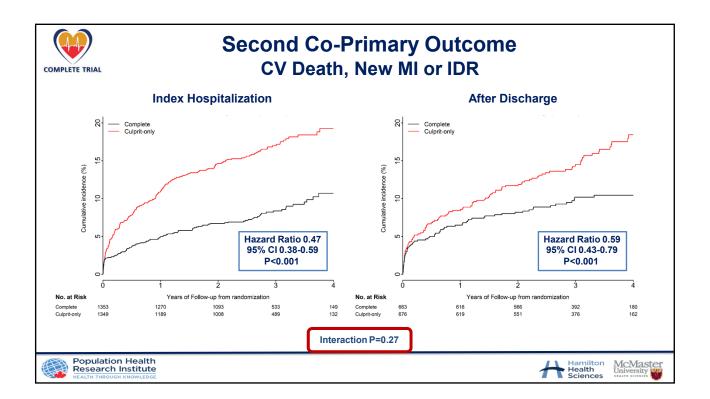


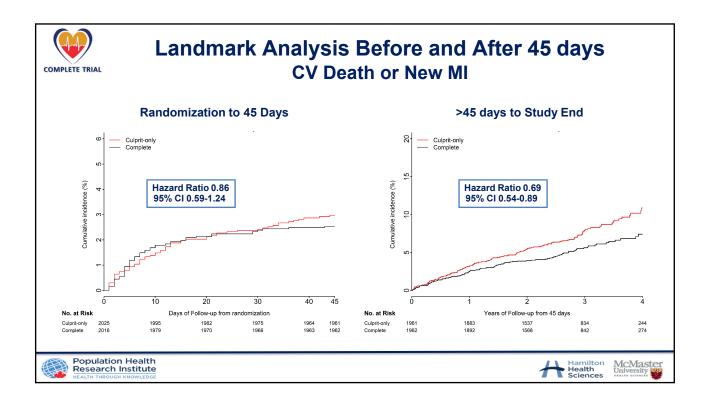

		Complete Revasc. N=2016		sion Only 025	HR (95% CI)	P value
	N (%)	%/year	N (%)	%/year		
Co-Primary Outcomes						
CV death or MI	158 (7.8)	2.7	213 (10.5)	3.7	0.74 (0.60-0.91)	0.004
CV death, MI or IDR	179 (8.9)	3.1	339 (16.7)	6.2	0.51 (0.43-0.61)	<0.001
Key Secondary Outcome						
CV death, MI, IDR, unstable angina or class IV HF	272 (13.5)	4.9	426 (21.0)	8.1	0.62 (0.53-0.72)	<0.001
Other Secondary Outcomes						
MI	109 (5.4)	1.9	160 (7.9)	2.8	0.68 (0.53-0.86)	0.002
IDR	29 (1.4)	0.5	160 (7.9)	2.8	0.18 (0.12-0.26)	<0.001
Unstable Angina	70 (3.5)	1.2	130 (6.4)	2.2	0.53 (0.40-0.71)	<0.001
CV death	59 (2.9)	1.0	64 (3.2)	1.0	0.93 (0.65-1.32)	0.68
All-cause Death	96 (4.8)	1.6	106 (5.2)	1.7	0.91 (0.69-1.20)	0.51

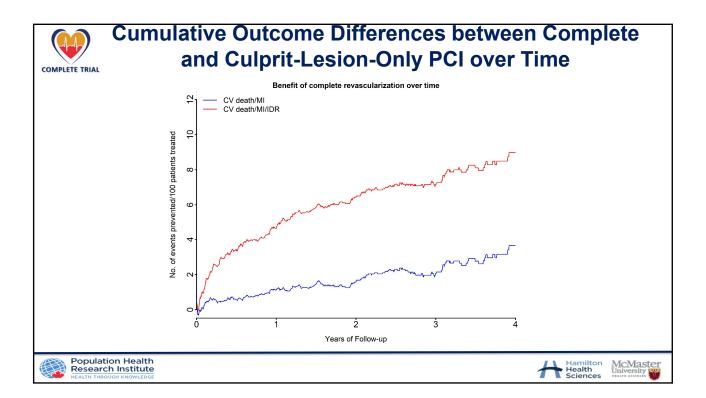
COMPLETE TRIAL

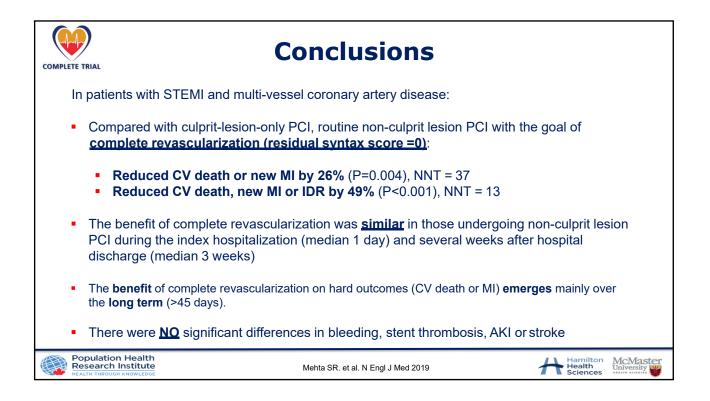
Sub-types of MI

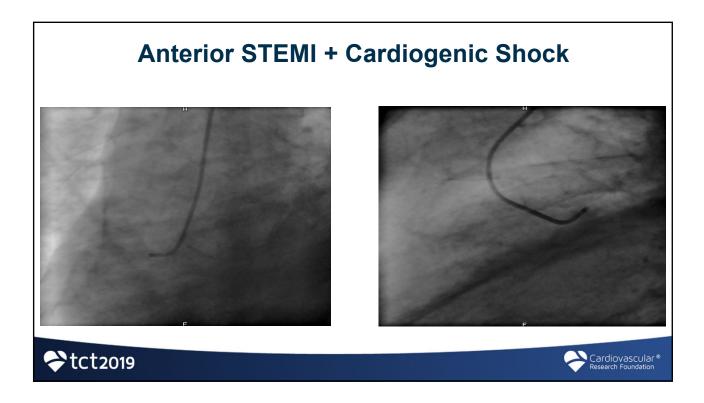

	Complete N=2		Culprit Le N=2		
	N (%)	%/year	N (%)	%/year	HR (95% CI)
Subtype of MI					
NSTEMI	66 (3.27)	1.11	105 (5.19)	1.78	0.63 (0.46-0.85)
STEMI	43 (2.13)	0.72	53 (2.62)	0.88	0.81 (0.54-1.22)
Universal MI Definition					
Type 1	63 (3.13)	1.05	128 (6.32)	2.17	0.49 (0.36-0.66)
Туре 2	16 (0.79)	0.26	13 (0.64)	0.21	1.24 (0.60-2.58)
Туре 3	4 (0.20)	0.07	1 (0.05)	0.02	4.04 (0.45-36.17)
Type 4a	16 (0.79)	0.27	8 (0.40)	0.13	2.01 (0.86-4.70)
Type 4b	8 (0.40)	0.13	13 (0.64)	0.21	0.62 (0.26-1.49)
Туре 5	1 (0.05)	0.02	1 (0.05)	0.02	1.00 (0.06-15.92)
			·		·
ation Health Irch Institute		Mehta SR. et al	. N Engl J Med 2019		Hamilton Health Sciences

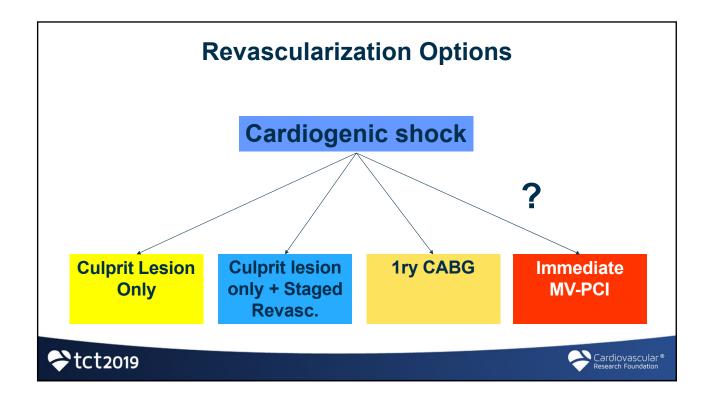


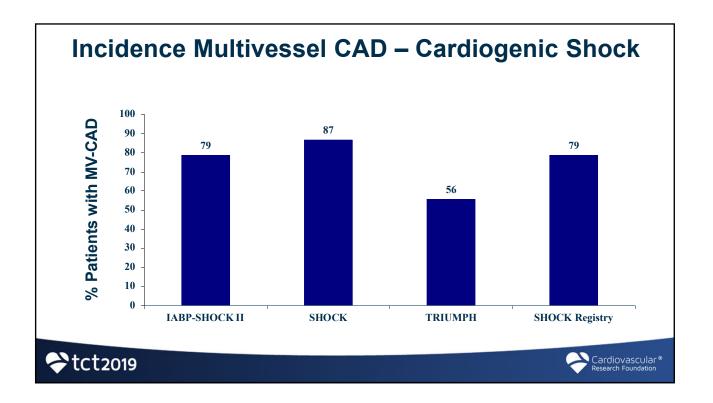


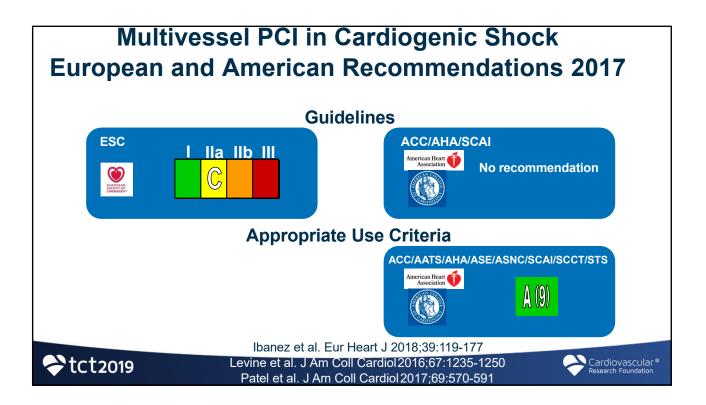

	Intended timing revascula			
Characteristic	Index hospitalization (N=2702)		P value	
Actual complete revascularization	1353 (50.1)	663 (49.5)		
Age – year	62.2±10.7	61.7±10.7	0.18	
Gender (male)	2151 (79.6)	1074 (80.2)	0.65	
Diabetes	552 (20.4)	235 (17.6)	0.03	
Chronic renal insufficiency	61/2586 (2.4)	20/1201 (1.7)	0.17	
Prior stroke	88 (3.3)	38 (2.8)	0.47	
Body mass index (BMI) – kg/m ²	28.3±5.6	28.3±5.0	0.97	
Prior myocardial infarction	188 (7.0)	114 (8.5)	0.08	
Prior PCI	184 (6.8)	99 (7.4)	0.49	
Time from symptom onset to primary Pe	CI		0.34	
<6 hours6-12 hours	1821/2678(68.0) 468/2678(17.5)	903/1316 (68.6) 208/1316 (15.8)		
 >12 hours 	389/2678(14.5)	205/1316 (15.6)		
Killip class ≥2	293/2674 (11.0)	137/1317 (10.4)	0.59	

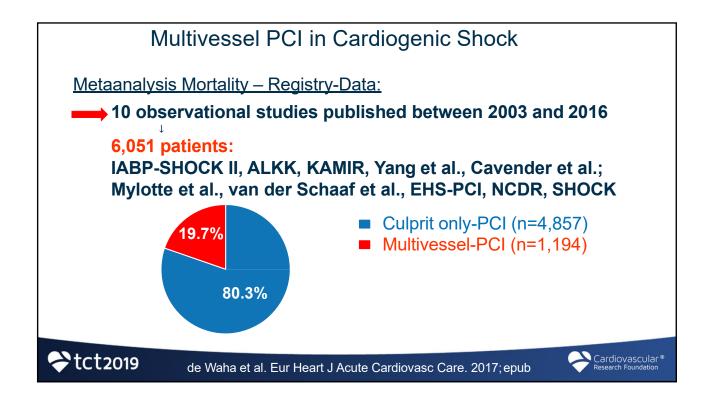

Characteristic	Index hospitalization (N=2702)	After discharge (N=1339)	P-value	
SYNTAX score				
 Baseline (including STEMI culprit) 	16.1±6.8	16.4±6.6	0.12	
 Residual (after index PCI) 	7.1±4.8	7.2±4.8	0.48	
 Lesion specific (STEMI culprit) 	8.6±5.3	8.9±5.3	0.04	
 Lesion specific (Non-culprit) 	4.5±2.7	4 7+2 7	0.04	
 Post NCL lesion PCI=0 	1095/1200 (91.3)	525/598 (87.8)	0.02	
(Complete revascularization achieved)	1000, 1200 (0110)	020/000 (01.0)		
Non-culprit lesions location				
Left main	7/3543 (0.2)	6/1812 (0.3)	0.77	
Left anterior descending	1379/3543 (38.9)	738/1812 (40.7)	0.20	
Circumflex	1293/3543 (36.5)	633/1812 (34.9)	0.26	
Right coronary artery	864/3543 (24.4)	435/1812 (24.0)	0.83	
Non-culprit lesion diameter stenosis			0.12	
• 50-69%	28/3468 (0.8)	9/1720 (0.5)		
• 70-79%	1435/3468 (41.4)	805/1720 (46.8)		
• 80-89%	1214/3468 (35.0)	500/1720 (29.1)		
• 90-99%	734/3468 (21.2)	357/1720 (20.8)		
• 100%	57/3468 (1.6)	49/1720 (2.8)		
Index procedure for STEMI				
Primary PCI	2479 (91.7)	1259 (94.0)	0.01	
Pharmaco-invasive PCI	87 (3.2)	38 (2.8)	0.51	
Rescue PCI	136 (5.0)	42 (3.1)	0.006	
Radial access	2143 (79.3)	1120 (83.6)	0.001	
Thrombus aspiration	609/2573 (23.7)	323/1166 (27.7)	0.008	



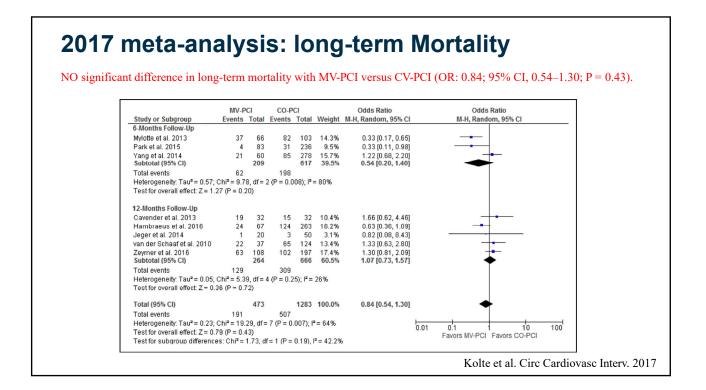


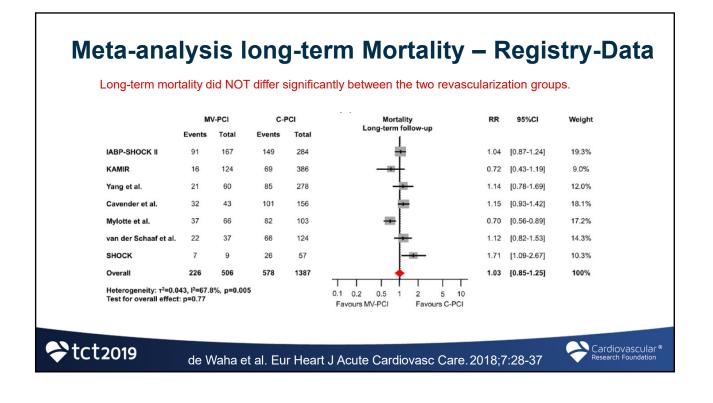




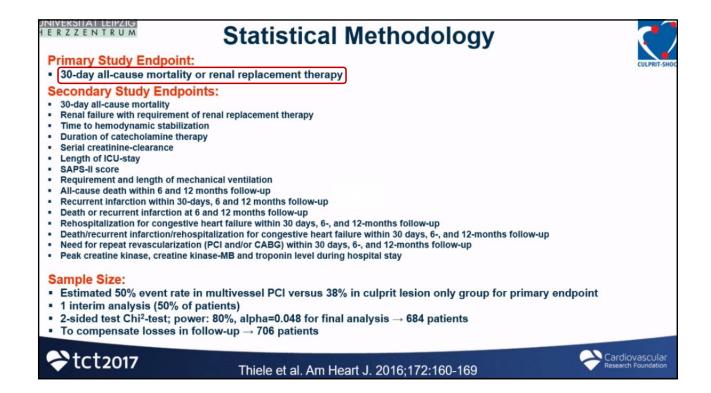


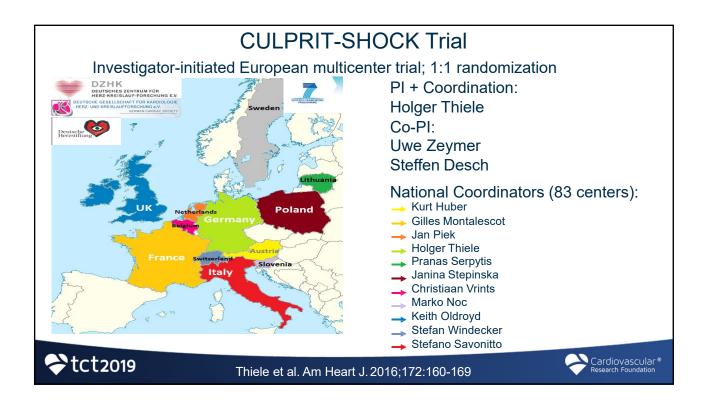
Trial	Follow-up	n/N n/N	Relative Risl 95%		Relative Risk 95% Cl	
Revascularization						
HOCK	1 year	81/152	100/150			0.72 (0.54;0.95)
MASH	30 days	22/32	18/23			0.87 (0.66;1.29)
otal		103/184	118/173	Early revascularization bet	Medical treatment better	0.82 (0.69;0.97)
asopressors						
OAP-2 (CS subgroup)	28 days	64/145	50/135			0.75 (0.55;0.93)
		04/140	00/100	Norepinephrine bette	Dopamine better	,
notropes						
Inverzagt et al.	30 days	5/16	10/16			0.33 (0.11;0.97)
				Le mendan better	Control better	
Slycoprotein IIb/Illa inhibito	rs			1		
RAGUE-18	In-hospital	15/40	13/40			1.15 (0.59;2.27)
				Abciximab better	Standard treatment better	
IO synthase inhibitors				j		
RIUMPH	30 days	97/201	76/180			1.14 (0.91;1.45)
HOCK II cotter et al.	30 days	24/59	7/20		X	1.16 (0.59;2.69)
otal	30 days	4/15 125/275	10/15 93/215			0.40 (0.13;1.05) 1.05 (0.85;1.29)
		120/2/0	93/215	NO synthase inhibition better	Placebo better	1.05 (0.65, 1.29)
ABP						
ABP-SHOCK I	30 days	7/19	6/21		<>	1.28 (0.45;3.72)
ABP-SHOCK II	30 days	119/300	123/298	_		0.96 (0.79;1.17)
otal		126/319	129/319		7	0.98 (0.81;1.18)
				IABP better	Standard treatment better	
VAD					í 🗖	
hiele et al.	30 days	9/21	9/20			0.95 (0.48;1.90)
urkhoff et al.	30 days	9/19	5/14			1.33 (0.57;3.10)
SAR-SHOCK MPRESS in Severe Shock	30 days	6/13	6/13			1.00 (0.44;2.29)
otal	30 days	11/24	12/24			0.92 (0.51;1.66) 1.01 (0.70;1.44)
Jai		35/77	32/71	LVAD better	IABP better	1.01 (0.70, 1.44)
				0 0.25 0.5 0.75 🗸	1.5 2 2.5 3	

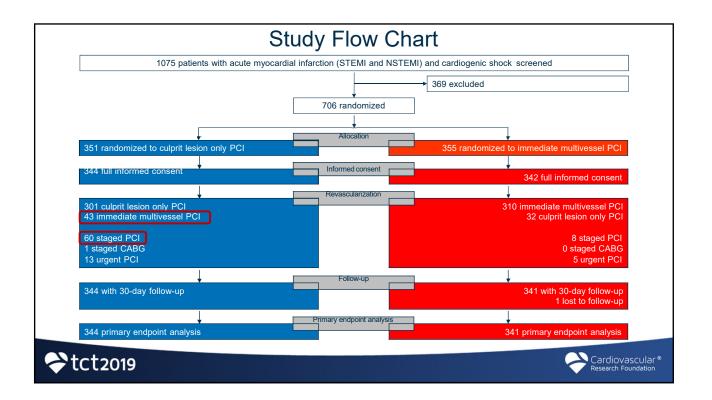


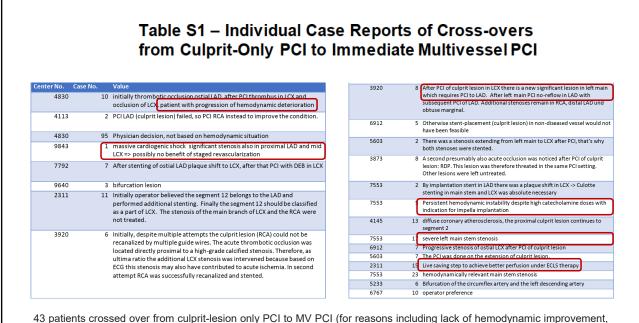


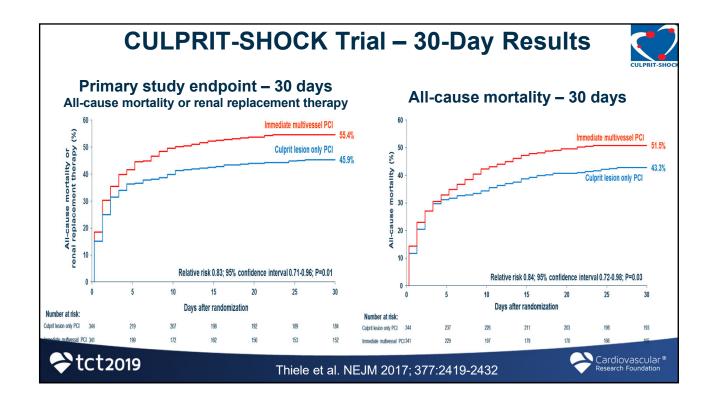
NO significant difference in short-term mortality with MV-PCI versus CV-PCI (OR: 1.08; 95% CI, 0.81-1.43; P = 0.61).


Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Bauer et al. 2012	31	64	81	214	9.7%	1.54 [0.88, 2.71]	
Cavender et al. 2009	158	433	737	2654	14.3%	1.49 [1.21, 1.85]	+
Cavender et al. 2013	14	32	10	32	5.2%	1.71 [0.62, 4.76]	
Hambraeus et al. 2016	19	67	106	263	9.4%	0.59 [0.33, 1.05]	
Jaguszewski et al. 2013	38	85	62	158	10.1%	1.25 [0.73, 2.13]	
Mylotte et al. 2013	36	66	80	103	8.4%	0.34 [0.18, 0.67]	
Park et al. 2015	2	83	22	236	3.1%	0.24 [0.06, 1.04]	
van der Schaaf et al. 2010	19	37	60	124	7.7%	1.13 [0.54, 2.35]	
Yang et al. 2014	19	60	68	278	9.1%	1.43 [0.78, 2.63]	+
Zeymer et al. 2015	57	121	160	434	11.9%	1.53 [1.02, 2.29]	
Zeymer et al. 2016	53	109	89	197	11.0%	1.15 [0.72, 1.84]	
Total (95% CI)		1157		4693	100.0%	1.08 [0.81, 1.43]	•
Total events	446		1475				
Heterogeneity: Tau ² = 0.14;	Chi ² = 30.	41, df=	10 (P =	0.0007)	; I ² = 67%		
Test for overall effect: Z = 0.5	51 (P = 0.6	61)					0.01 0.1 1 10 100 Favors MV-PCI Favors CO-PCI

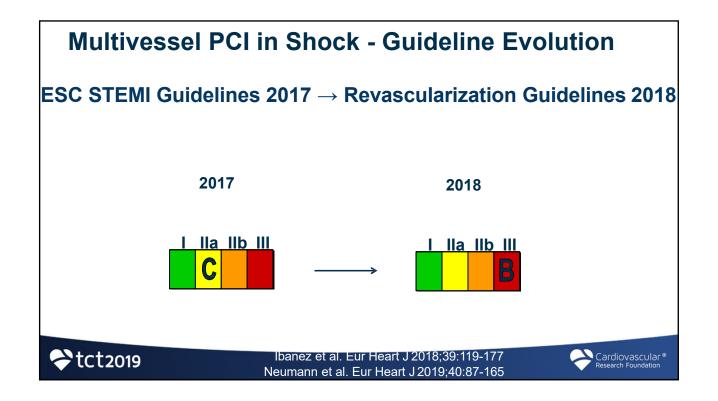


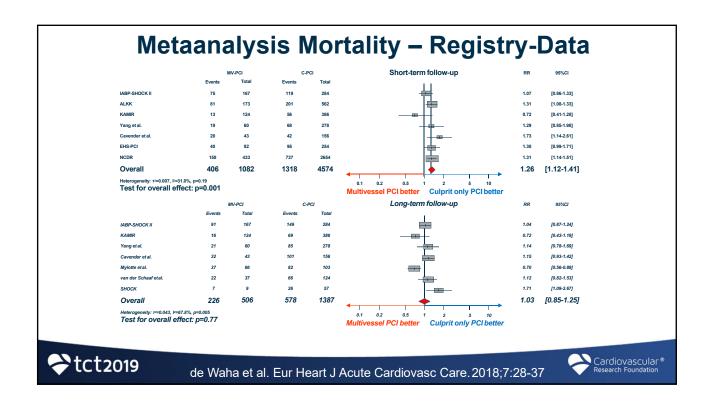

patients (risk	MV-PCI		C-PCI				050/01	
	Events	Total	C-F Events	Total	Mortality Short-term follow-up	RR	95%CI	Weight
IABP-SHOCK II	75	167	119	284	4	1.07	[0.86-1.33]	18.5%
ALKK	81	173	201	562		1.31	[1.08-1.33]	21.1%
KAMIR	13	124	56	386		0.72	[0.41-1.28]	3.9%
Yang et al.	19	60	68	278		1.29	[0.85-1.98]	6.6%
Cavender et al.	20	43	42	156		1.73	[1.14-2.61]	7.0%
EHS-PCI	40	82	95	254	+	1.30	[0.99-1.71]	13.5%
NCDR	158	433	737	2654		1.31	[1.14-1.51]	29.3%
Overall	406	1082	1318	4574	•	1.26	[1.12-1.41]	100%
Heterogeneity: τ ² = Test for overall eff		0%, p=0.19)		0.1 0.2 0.5 1 2 5 10 Favours MV-PCI Favours C-PCI			

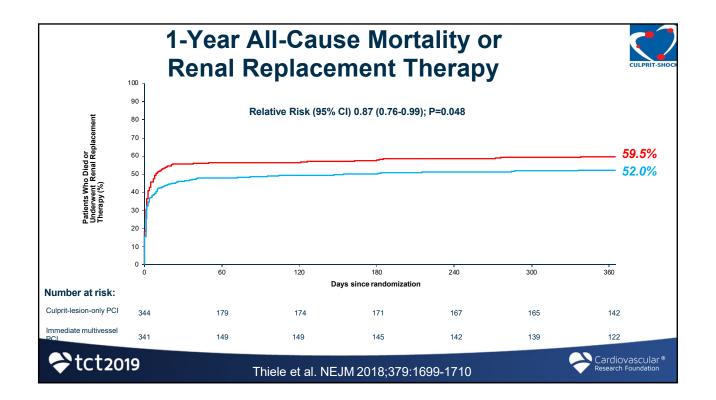


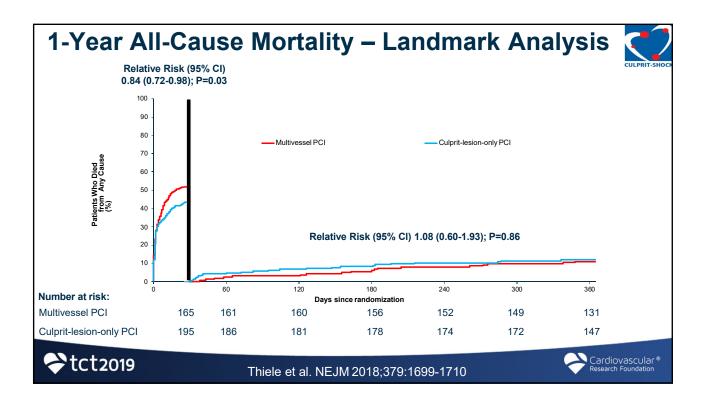

43 patients crossed over from culprit-lesion only PCI to MV PCI (for reasons including lack of hemodynamic improvement, discovery of new lesions after initial PCI, and plaque shifts), potentially leading to bias toward including more complex and comorbid patients in the MV PCI group. This may lead to overestimation of the benefit of culprit-lesion only PCI.

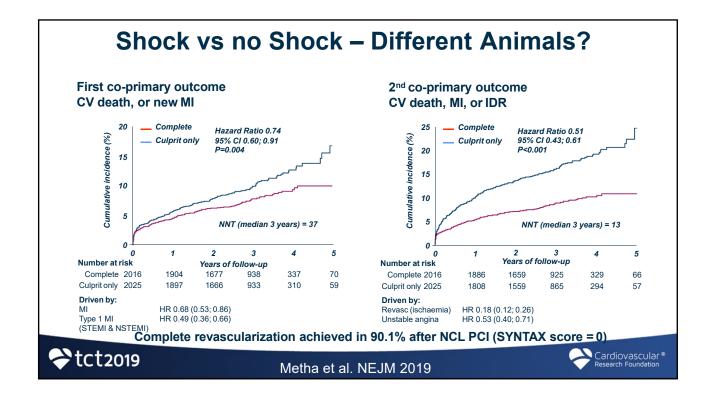
Characteristic	Culprit only PCI	Multivessel PCI
	(n=344)	(n=342)
Age (years); median (IQR)	70 (60-78)	70 (60-77)
Male sex; n/total (%)	257/343 (74.9)	267/342 (78.1)
Prior myocardial infarction; n/total (%)	60/339 (17.7)	53/335 (15.8)
Prior PCI; n/total (%)	64/339 (18.9)	63/335 (18.8)
Prior coronary arterial bypass surgery; n/total (%)	20/341 (5.9)	13/337 (3.9)
Signs of impaired organ perfusion; n/total (%)		
Altered mental status	237/341 (69.5)	224/341 (65.7)
Cold, clammy skin and extremities	233/338 (68.9)	236/335 (70.4)
Oliguria	80/334 (24.0)	93/326 (28.5)
Arterial lactate >2.0 mmol/l	216/334 (64.7)	224/330 (67.9)
Fibrinolysis <24 h before randomization; n/total (%)	19/341 (5.6)	15/341 (4.4)
Resuscitation before randomization; n/total (%)	177/341 (51.9)	189/342 (55.3)
ST-elevation myocardial infarction; n/total (%)	206/335 (61.5)	209/330 (63.3)
No. of diseased vessels; n/total (%)		
1	3/343 (0.9)	2/342 (0.6)
2	122/343 (35.6)	124/342 (36.3)
3	218/343 (63.6)	216/342 (63.2)
Patients with at least one CTO; n/total (%)	77/344 (22.4)	82/342 (24.0)
Left ventricular ejection fraction (%); median (IQR)	33 (25-40)	30 (21-40)

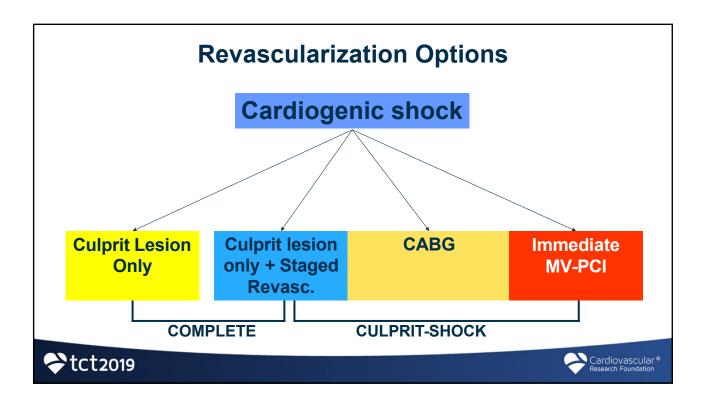

Cardiovascular® Research Foundation

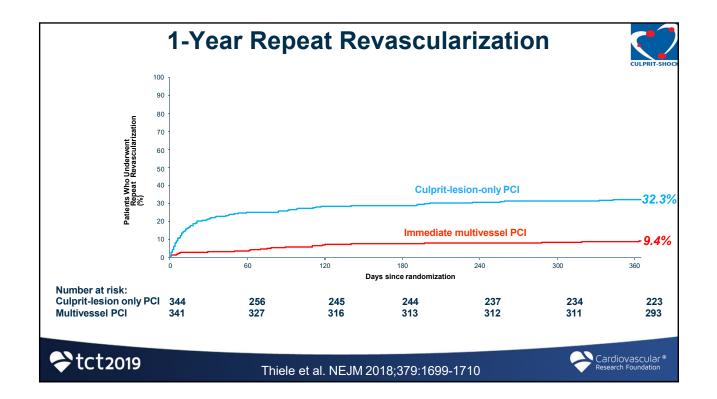


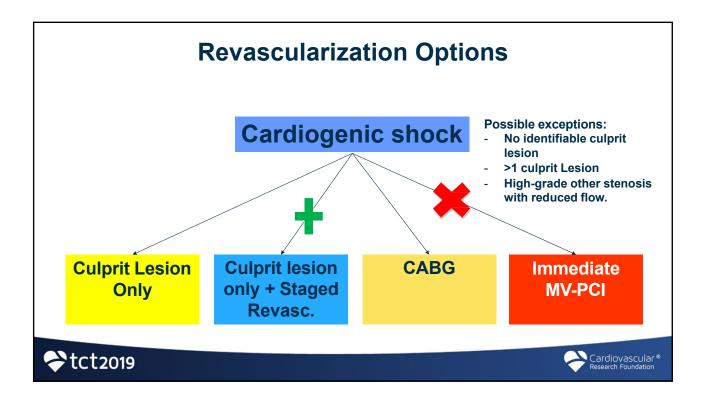

Characteristic	Culprit only PCI	Multivessel PCI	
	(n=344)	(n=342)	
Femoral access; n/total (%)	287/343 (83.7)	277/342 (81.0)	0.36
Radial access; n/total (%)	61/343 (17.8)	66/342 (19.3)	0.61
Stent implanted in culprit lesion: n/total (%)	326/343 (95.0)	324/342 (94.7)	0.86
Drug-eluting stent in culprit lesion: n/total (%)	305/326 (93.6)	308/324 (95.1)	0.41
TIMI-flow III post PCI of culprit lesion; n/total (%)	289/342 (84.5)	293/338 (86.7)	0.46
Immediate PCI of non-culprit lesions; n/total (%)	43/344 (12.5)	310/342 (90.6)	< 0.001
Immediate complete revascularization; n/total (%)	26/344 (7.6)	277/342 (81.2)	<0.001
Total amount of contrast agent (ml); median (IQR)	190 (140-250)	250 (200-350)	<0.001
Staged PCI of non-culprit lesions; n/total (%)	60/344 (17.4)	8/341 (2.3)	<0.001
Staged coronary artery bypass surgery; n/total (%)	1/344 (0.3)	0/341	>0.99
Mechanical circulatory support: n/total (%)	99/344 (28.8)	95/342 (27.8)	0.77
Intraaortic balloon pump; n/total (%)	25/99 (25.3)	26/95 (27.4)	0.74
Impella 2.5; n/total (%)	16/99 (16.2)	18/95 (18.9)	0.61
Impella CP; n/total (%)	30/99 (30.3)	18/95 (18.9)	0.07
TandemHeart; n/total (%)	2/99 (2.0)	0/95	0.50
ECMO; n/total (%)	18/99 (18.2)	27/95 (28.4)	0.09
Mild hypothermia; n/total (%)	111/344 (32.3)	118/340 (34.7)	0.50
Mechanical ventilation; n/total (%)	273/344 (79.4)	282/339 (83.2)	0.20
Duration of mechanical ventilation (days); median (IQR)	3 (1-7)	3 (1-7)	0.97
Duration of intensive care treatment (days); median	5 (2-12)	5 (2-11)	0.61

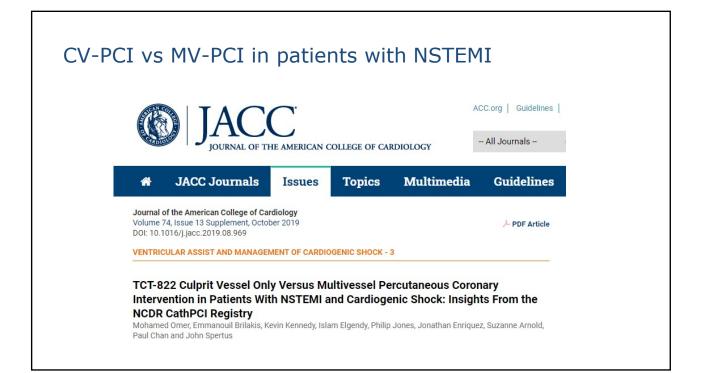



Baseline Variable	Multivessel PCI	IT-SHOCK Culprit lesion only PCI		Relative Risk (95% Cl)	P Value for Interaction CULPRIT
Sex					
Male Female	148/266 (55.6) 41/75 (54.7)	109/257 (42.4) 48/86 (55.8)		0.76 (0.64-0.91) 1.02 (0.77-1.35)	0.11
Age					
<50 years 50-75 years >75 years	3/16 (18.8) 114/226 (50.4) 72/99 (72.7)	6/17 (35.3) 82/212 (38.7) 70/115 (60.1)		1.88 (0.56-6.29) 0.77 (0.62-0.95) 0.84 (0.69-1.01)	0.24
Diabetes					
No Yes	116/218 (53.2) 66/116 (56.9)	93/235 (39.6) 59/102 (57.8)		0.74 (0.61-0.91) 1.02 (0.81-1.28)	0.08
Hypertension					
No Yes	68/129 (52.7) 114/205 (55.6)	65/139 (46.8) 88/200 (44.0)		0.89 (0.70-1.13) 0.79 (0.65-0.97)	0.47
Type of infarction					
NSTEMI STEMI	54/97 (55.7) 128/233 (54.9)	45/98 (45.9) 108/237 (45.6)		0.82 (0.62-1.09) 0.83 (0.69-0.99)	0.96
STEMI type					
Anterior infarction Non-anterior infarction	59/113 (52.2) 48/92 (52.2)	57/108 (52.8) 34/97 (35.0)		1.01 (0.79-1.30) 0.67 (0.48-0.94)	0.07
Previous infarction					
No Yes	154/281 (54.8) 28/53 (52.8)	128/279 (45.9) 25/60 (41.7)		0.84 (0.71-0.99) 0.79 (0.53-1.17)	0.83
Coronary artery disease		-			
2-vessel disease 3-vessel disease	64/124 (51.6) 124/215 (57.7)	48/122 (39.3) 109/218 (50.0)		0.76 (0.58-1.01) 0.87 (0.73-1.03)	0.56
Chronic total occlusion					
No Yes	146/259 (56.4) 43/82 (52.4)	131/267 (49.1) 27/77 (35.1]		0.87 (0.74-1.02) 0.67 (0.46-0.97)	0.26
		0.25 0.5 Culprit lesion only	1 2 PCI better Multivessel I	4 PCI better	

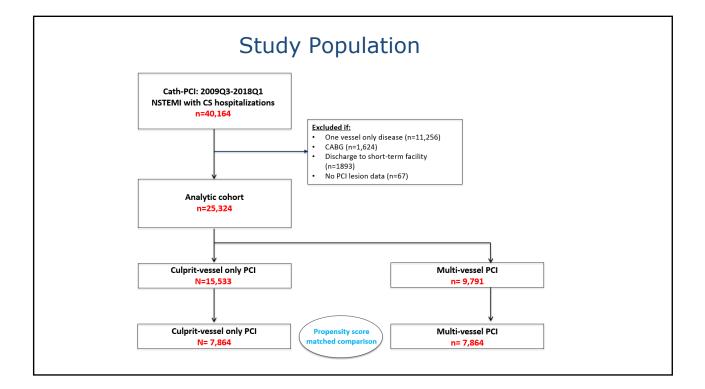








Background


- In the case of cardiogenic shock, possible advantages of multivessel PCI include an <u>enhanced perfusion of the peri-</u> <u>infarct area</u>, which may improve LV function and potentially reduce infarct size.
- Additionally, multivessel PCI could <u>prevent recurrent ischemia</u> in non-infarct related lesions.
- However, this PCI strategy may also lead to harm due to increased procedural time, <u>more contrast use</u> and increased thrombogenicity.

Objectives

- To describe the <u>frequency</u> of multi-vessel PCI in patients with NSTEMI presenting with cardiogenic shock.
- To compare the association of these strategies with <u>short- and</u> <u>long-term outcomes</u> in the National Cardiovascular Data CathPCI Registry.

Data Source

- The NCDR CathPCI registry prospectively collects data on patient characteristics, procedural details, and in-hospital outcomes of patients receiving diagnostic angiography or PCI from >1,000 sites across the US to support quality improvement.
- Patients > 65 years who underwent PCI between 2009 and 2013 at hospitals participating in the NCDR CathPCI Registry were linked to Medicare fee-for-service claims to obtain long-term survival data for this analysis.
- Based on the revascularization strategy, patients were classified into <u>CV-PCI</u> only intervention or <u>multivessel PCI</u> groups (culprit vessel in addition to <u>immediate</u> additional vessel PCI).

Study Outcomes

The primary outcome:

- The occurrence of procedural complications, including in-hospital mortality, bleeding events within 72 hours, requirement of RBC transfusion, stroke, new requirement for dialysis and pericardial tamponade.

The secondary outcome:

- 7-year all-cause mortality.

Statistical analysis

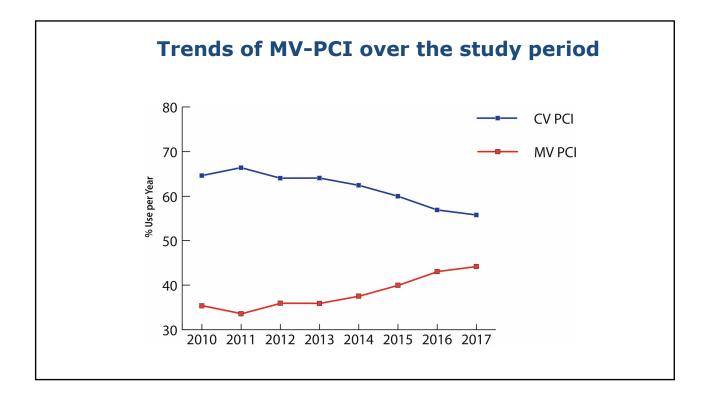
- Baseline characteristics, PCI procedural findings, and in hospital outcomes were compared between patients with CV-PCI versus multivessel PCI.

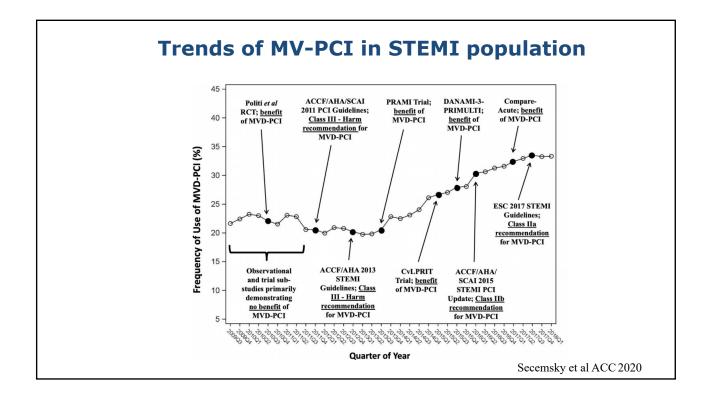
- To better balance the groups for comparison, we conducted a pre-specified **propensity score analysis**. The propensity score for an individual was defined as the conditional probability of receiving a particular treatment (in this case multivessel revascularization) given the individual's covariates.

Statistical analysis

To estimate these scores, we created a logistic regression model to predict the use of multivessel PCI conditioned on the following covariates:

- Demographic variables (age, sex, race, insurance)
- <u>Clinical risk factors</u>: (BMI, GFR, DLD, HTN, DM, family history of premature CAD, smoking, history of MI, history of heart failure, prior valve surgery, prior PCI, prior CABG, current haemodialysis treatment, cerebrovascular disease, PAD, chronic lung disease)
- Year of PCI
- <u>Disease severity</u> (CCS class I- IV angina within 2 weeks, heart failure within 2 weeks, NYHA class IV heart failure, cardiomyopathy, cardiac arrest within 24 hours)
- <u>Pre-PCI procedure information</u> (MCS device use and arterial access site)
- Pre-procedural medications: glycoprotein IIb/IIIa inhibitors
- Lesion characteristics: left main disease, lesion complexity class C.


Statistical analysis


-We then performed a **1:1** nearest neighbor match on the logit of the propensity score within a caliper width of 0.2 times the standard deviation of the logit of the propensity score.

-The success of matching was examined by comparing standardized differences in the distribution of the covariates between the 2 treatment strategies; a difference of <10% was considered acceptable.

- Conditional logistic regression was used to produce odds ratios and 95% confidence intervals.

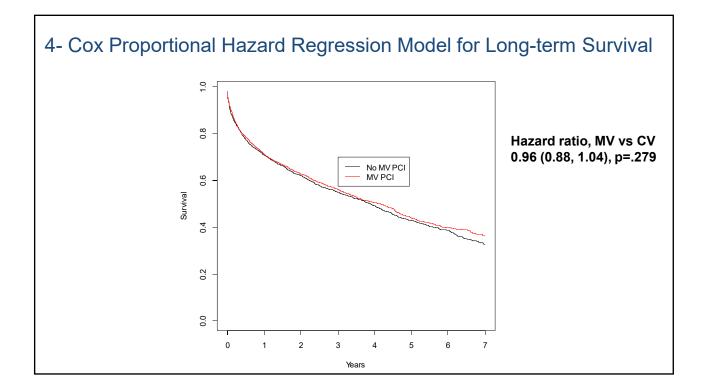
-Finally, **Cox proportional hazard analysis** were used to show event rates over time using survivors at discharge from the matched groups.

Table 1: Baseline characteristics

Variable (%)	Before ma	tching		After ma	tching	
	Multivessel PCI n= 9,791	Culprit Vessel PCI n= 15,533	Standardized Difference (10%)	Multivessel Vessel PCI n= 7,864	Culprit Vessel PCI n= 7,864	Standardized Difference (10%)
Patient demographics:						
Age, mean years	69.2 ± 11.9	69.2 ± 11.7	0.3	69.0 ± 11.9	69.0 ± 11.8	0.1
Female	3384 (34.6%)	4974 (32.0%)	5.4	2671 (34.0%)	2646 (33.6%)	0.7
Race - White	8136 (83.1%)	13160 (84.7%)	4.4	6563 (83.5%)	6587 (83.8%)	1.0
BMI	29.2 ± 6.9	29.2 ± 8.7	0.1	29.1 ± 6.9	29.2 ± 8.1	0.8
Primary expected payer						
Medicare	6452 (65.9%)	10217 (65.8%)	0.3	5126 (65.2%)	5103 (64.9%)	0.6
Medicaid	1319 (13.5%)	2035 (13.1%)	1.1	1064 (13.5%)	1066 (13.6%)	0.1
Private insurance	5462 (55.8%)	8658 (55.7%)	0.1	4344 (55.2%)	4391 (55.8%)	1.2
No-insurance	590 (6.0%)	957 (6.2%)	0.6	503 (6.4%)	505 (6.4%)	0.1
Medical history						
Current/Recent Smoker	2353 (24.1%)	4015 (25.9%)	4.1	1968 (25.0%)	1963 (25.0%)	0.1
Hypertension	8176 (83.6%)	13105 (84.4%)	2.2	6567 (83.5%)	6588 (83.8%)	0.7
Dyslipidemia	7204 (73.7%)	11609 (74.9%)	2.6	5785 (73.6%)	5769 (73.4%)	0.5
FH of Premature CAD	1354 (13.8%)	2453 (15.8%)	5.5	1147 (14.6%)	1155 (14.7%)	0.3
Prior MI	3454 (35.3%)	6146 (39.6%)	8.9	2823 (35.9%)	2844 (36.2%)	0.6
Prior Heart Failure	3290 (33.6%)	5083 (32.7%)	1.9	2586 (32.9%)	2589 (32.9%)	0.1
Prior Valve Surgery	252 (2.6%)	487 (3.1%)	3.4	219 (2.8%)	212 (2.7%)	0.5
Prior PCI	3040 (31.1%)	5542 (35.7%)	9.8	2524 (32.1%)	2526 (32.1%)	0.1
Prior CABG	1606 (16.4%)	4726 (30.4%)	33.6	1545 (19.6%)	1561 (19.8%)	0.5
Currently on Dialysis	1119 (11.4%)	1440 (9.3%)	7.1	809 (10.3%)	811 (10.3%)	0.1
Cerebrovascular Disease	1997 (20.4%)	3211 (20.7%)	0.7	1564 (19.9%)	1595 (20.3%)	1.0
Peripheral Arterial Disease	2210 (22.6%)	3557 (22.9%)	0.8	1701 (21.6%)	1686 (21.4%)	0.5
Chronic Lung Disease	2149 (22.0%)	3635 (23.4%)	3.5	1768 (22.5%)	1792 (22.8%)	0.7
Diabetes Mellitus	5296 (54.1%)	7959 (51.3%)	5.7	4158 (52.9%)	4151 (52.8%)	0.2

Results

Variable (%)	Before mat	ching		After ma	tching	
	Multivessel PCI n= 9,791	Culprit Vessel PCI n= 15,533	Standardized Difference (10%)	Multivessel Vessel PCI n= 7,864	Culprit Vessel PCI n= 7,864	Standardized Difference (10%)
Cath Lab Visit	,					
PCI Status			10.8			0.5
Urgent	4817 (49.2%)	7268 (46.8%)		3807 (48.4%)	3812 (48.5%)	
Emergent	3728 (38.1%)	6539 (42.1%)		3135 (39.9%)	3133 (39.8%)	
Salvage	962 (9.8%)	1190 (7.7%)		683 (8.7%)	686 (8.7%)	
Cardiac Arrest w/in 24 Hours	2215 (22.6%)	4024 (25.9%)	7.7	1871 (23.8%)	1864 (23.7%)	0.2
Heart failure within 2 weeks	5769 (58.9%)	7635 (49.2%)	19.7	4333 (55.1%)	4341 (55.2%)	0.2
Pre-PCI LV EF	33.1 ± 14.9	35.2 ± 15.2	14.0	34.0 ± 15.0	33.8 ± 14.9	1.5
GFR	55.9 ± 21.9	56.5 ± 21.7	2.6	56.4 ± 21.8	56.5 ± 22.0	0.7
IABP	4397 (44.9%)	5648 (36.4%)	17.5	3372 (42.9%)	3413 (43.4%)	1.1
Other MCS	2123 (21.7%)	1506 (9.7%)	33.4	1169 (14.9%)	1139 (14.5%)	1.1
Arterial access			2.2			1.4
Femoral access	8648 (88.4%)	13755 (88.6%)		6945 (88.3%)	5538 (88.7%)	
Radial access	1072 (11.0%)	1644 (10.6%)		863 (11.0%)	856 (10.9%)	
Other	68 (0.7)	131 (0.8%)		56 (0.7%)	48 (0.6%)	
GPIIbIIIa use	2853 (29.2%)	4707 (30.3%)	2.6	2381 (30.3%)	2375 (30.2%)	0.2
Contrast volume	230.4 ± 109.1	183.4 ± 89.9	47.0	228.7 ± 106.3	183.1 ± 91.4	46.0
Fluoroscopy Time	26.3 ± 17.3	18.5 ± 13.5	50.7	25.1 ± 16.3	19.1 ± 14.0	39.1


Results

Variable (%)	Before mate	hing		After ma	tching	_
	Multivessel PCI n= 9,791	Culprit Vessel PCI n= 15,533	Standardized Difference (10%)	Multivessel Vessel PCI n= 7.864	Culprit Vessel PCI n= 7.864	Standardized Difference (10%)
iseased and intervened vessels	n - <i>)</i> ,//1	II-15,555	(1070)	n 7,004	n 7,004	(1070)
Left main disease	3584 (36.6%)	3243 (20.9%)	35.3	2109 (26.8%)	2181 (27.7%)	2.1
LAD disease	8746 (89.3%)	12958 (83.4%)	17.3	6904 (87.8%)	6852 (87.1%)	2.0
RCA disease	7187 (73.4%)	12768 (82.2%)	21.3	5980 (76.0%)	6029 (76.7%)	1.5
LCx disease	8069 (82.4%)	11625 (74.8%)	18.5	6346 (80.7%)	6307 (80.2%)	1.3
Prox LAD disease	6000 (61.3%)	7784 (50.1%)	22.6	4437 (56.4%)	4424 (56.3%)	0.3
Left main intervened	3241 (33.1%)	875 (5.6%)	74.1	1919 (24.4%)	609 (7.7%)	46.6
1AD intervened	7712 (78.8%)	5564 (35.8%)	96.4	6025 (76.6%)	3144 (40.0%)	80.0
RCA intervened	4046 (41.3%)	4397 (28.3%)	27.6	3553 (45.2%)	1938 (24.6%)	44.1
LCx intervened	7025 (71.7%)	4697 (30.2%)	91.3	5631 (71.6%)	2173 (27.6%)	97.9
LAD culprit	4700 (48.0%)	5564 (35.8%)	24.9	3575 (45.5%)	3144 (40.0%)	11.1
RCA culprit	1970 (20.1%)	4397 (28.3%)	19.2	1751 (22.3%)	1938 (24.6%)	5.6
LCx culprit	3831 (39.1%)	4697 (30.2%)	18.8	3016 (38.4%)	2173 (27.6%)	22.9
Left main culprit	2313 (23.6%)	875 (5.6%)	52.6	1352 (17.2%)	609 (7.7%)	28.9
Chronic total occlusion PCI	877 (9.0%)	807 (5.2%)	14.7	745 (9.5%)	430 (5.5%)	15.3
Pre-PCI TIMI0	3038 (31.0%)	5112 (32.9%)	4.0	2592 (33.0%)	2638 (33.5%)	1.2
Class C lesion	8146 (83.2%)	10744 (69.2%)	33.4	6316 (80.3%)	6309 (80.2%)	0.2

Clinical Outcomes

	Before mate	ching		After ma	tching	_
	Multivessel PCI n= 9,791	Culprit Vessel PCI n= 15,533	P-Value	Multivessel Vessel PCI n= 7,864	Culprit Vessel PCI n= 7,864	P-Value
In-hospital mortality	3204 (32.7%)	4942 (31.8%)	0.13	2432 (30.9%)	2706 (34.4%)	<0.001
Bleeding Event within 72 Hours	1431 (14.6%)	1487 (9.6%)	<0.001	1039 (13.2%)	845 (10.8%)	<0.001
Blood Transfusion	2504 (25.6%)	2759 (17.8%)	<0.001	1815 (23.1%)	1530 (19.5%)	<0.001
New Requirement for Dialysis	613 (6.3%)	689 (4.4%)	< 0.001	447 (5.7%)	358 (4.5%)	0.001
Tamponade	39 (0.4%)	34 (0.2%)	0.009	29 (0.4%)	22 (0.3%)	0.32
Stroke	209 (2.1%)	249 (1.6%)	0.001	152 (1.9 %)	146 (1.9%)	0.73

Subgroup analys	sis		
Cohort	MVPCI vs Not Odds ratio for Mortality, 95% Cl	p-value	Interaction P-value
Full	0.85 (.79, .91)	<.001	NA
Age>65	.81 (.74, .90)	<.001	0.04
Age<=65	.90 (.78, 1.04)	.035	0.34
Male	.87 (.80, .96)	.005	0.54
Female	.82 (.71, .95)	.007	0.51
DM	.91 (.82, 1.02)	.109	0.44
No DM	.79 (.70, .89)	<.001	0.14
Mech Support	.65 (.52, .80)	<.001	
No Mech Support	.90 (.83, .97)	<.001	0.006

Discussion

- Nearly 2 in 5 patients underwent multivessel PCI over time, with an increasing prevalence for multivessel PCI over time.

- Compared with CV-PCI, patients undergoing multivessel PCI had lower adjusted in-hospital mortality, but similar long-term mortality at 7 year follow-up.

- These results have important clinical implications because they are applicable to the general US population requiring acute interventional care.

Discussion

The discrepancy of the in-hospital mortality results of our study compared to CULPRIT-SHOCK is likely related to several differences in the design of the two studies.

1- CUPRIT-SHOCK compared **MV-PCI** to **culprit-only PCI** with staged revascularization if necessary. As a result, in the culprit-lesion only PCI group, 12.5% underwent immediate multivessel revascularization and 17.7% underwent staged multivessel revascularization. Overall, 30.2% of the culprit-lesion-only PCI group was actually treated by multivessel PCI.

In contrast, our study compared patients who underwent **culprit vessel PCI** with those that underwent **immediate multivessel PCI**. The percentage of staged PCI was < 5% in both groups. Therefore, multivessel PCI is defined very differently in both studies and cannot be considered equivalent.

Discussion

2- There may be difference in the patient population included in the analysis. In the CULPRIT-SHOCK trial, ~ 40% of the cohort were **NSTEMI**, 50% of the patients had **resuscitation** before randomization and the rate of **MCS** use was relatively low (28%).

However, our study **exclusively** included **NSTEMI** patients, **25%** of whom had **cardiac arrest** and the rate of **MCS use was 55%**.

Furthermore, Anderson et al. showed that NSTEMI patients with shock carried a greater burden of comorbidities compared to patients with STEMI. The incidence of diabetes, PAD, prior MI and prior CABG were more common in our study compared with CULPRIT-SHOCK study.

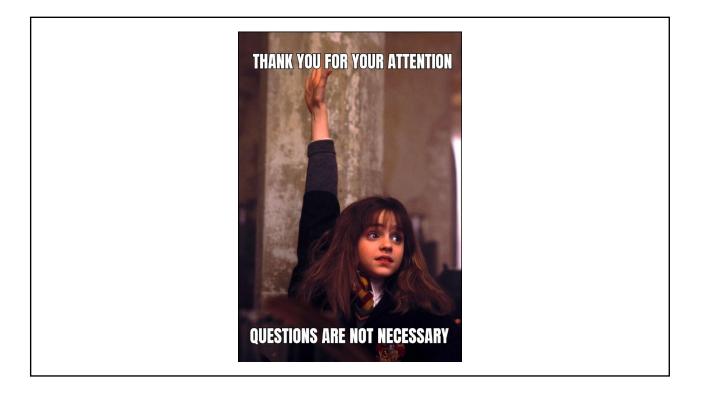
Anderson et al: Circ Cardiovasc Qual Outcomes 2013;6:708-15

Discussion

3- In the CULPRIT-SHOCK trial, 23% of patients had one or more CTO and all CTOs were

attempted in the multivessel PCI group according to the predetermined trial protocol.

In contrast, in our study, CTO PCI were performed in ~ 9.5 % of the MV-PCI patients.


This may have contributed to less contrast load and less requirement for dialysis observed in our study compared to the CULPRIT-SHOCK (5.7% vs 16.4%).

Conclusion

1-In patients with multivessel coronary artery disease and cardiogenic shock complicating AMI (**STEMI** and **NSTEMI**), culprit lesion only PCI with possible staged revascularization <u>reduced short tem</u> <u>mortality at 30 days</u>. However, the 1-year mortality data was similar between the two groups.

2- US registry real-world data showed that ~ 40% of **NSTEMI** patients with MVD and cardiogenic shock are managed with a strategy of **multivessel PCI**. This strategy was associated with **lower adjusted in-hospital mortality** but similar long-term survival compared with culprit vessel PCI.

3- Further well-designed RCTs are still needed!

