MHIF FEATURED STUDY: NanoCor

Currently Enrolling EPIC message to Research MHIF Patient Referral

CONDITION:	PI:	RESEARCH CONTACTS:	SPONSOR:
Non-Ischemic	Jay Traverse, MD	Jake Jensen – Jacob.Jensen@allina.com 612-863-3818	AskBio
Cardiomyopathy	Kasia Hryniewicz, MD	Kari Thomas - Kari.M.Thomas@allina.com 612-863-7493	

DESCRIPTION: an early phase, non-randomized study evaluating the safety of a single antegrade epicardial coronary artery infusion of NAN-101 in up to 12 subjects with non-ischemic cardiomyopathy and NYHA class III symptoms.

<u>NAN-101</u> is a gene therapy product composed of a novel adeno-associated virus designed to target cardiomyocytes and deliver it's payload of I-1c transgene. This genetic material provides code for an upstream inhibitor of the SERC2a pathway, which has been identified as a primary pathogenic mechanism in heart failure. The goal is to improve calcium cycling within the heart

Preclinical studies have shown that constitutively activating I-1 within the failing rat heart improved not only contractility, but also reversed adverse remodeling by directly decreasing fibrosis and cardiac hypertrophy.

CRITERIA LIST/ QUALIFICATIONS:

Inclusion:

- Chronic non-ischemic cardiomyopathy
- LVEF of 30% or less

- Exclusion:
 - Ischemic cardiomyopathy
 - Restrictive cardiomyopathy/ infiltrative cardiomyopathy
 - Renal failure

NYHA III

MHIF FEATURED STUDY: SOLVE-CRT

Coming soon (~Feb. 16)! **EPIC message: Research MHIF Patient Referral**

Stimulation Of the Left Ventricular Endocardium for Cardiac Resynchronization Therapy in Non-Responders, Previously Untreatable and High-risk Upgrade Patients

SPONSOR: **CONDITION:** PI: **RESEARCH CONTACT: EBR Systems** Heart Failure with previously untreatable Jay Sengupta, MD Jessie Whelan CRT or High-Risk Upgrades (HRU)* Jessica.Whelan@allina.com | 612-863-1661

DESCRIPTION:

Three-part study that will work to demonstrate the safety and effectiveness of the WiSE CRT System. Two-part procedure (first implanting transmitter and battery and then implanting electrode in LV) followed by 5-year follow-up.

CRITERIA LIST/ QUALIFICATIONS:

Inclusion:

- Patient with a class I or IIa indication for implantation of a CRT device and one of the following:
 - CRT non-responder
 - EF remained unchanged or worsened since implant AND •
 - Patient's clinical status has remained unchanged or worsened
 - Previously untreatable patient because CRT failed or programmed off
- High-Risk Upgrade
- Patient is on stable Guideline Directed Medical Therapy
- Patient has suitable anatomy for implant
- Adequate acoustic window, LV wall thickness in implant area >5mm, and absence of LV wall structural abnormalities)

*About 30% of patients have been found to not respond clinically to CRT.

Exclusion: (partial list)

- Pure RBBB
- LVEDD > 8 cm
- Non-ambulatory or unstable NYHA class IV
- Contraindications to heparin, chronic anticoagulants, or antiplatelet agents
- AF patients with RV pacing < 95% and/or have documented AF episode > 30 minutes or cardioversion within last 30 days
- Patients with prosthetic AV and non-viable transeptal • approach, or patients with prosthetic MV and non-viable aortic approach for implant

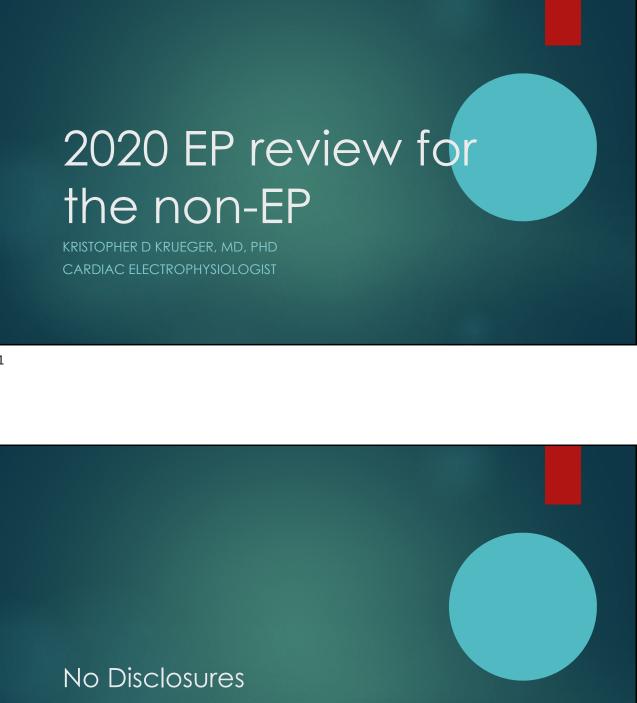
MHIF FEATURED STUDY: Myocardial perfusion and contraction assessed by cardiac MRI in acute and recovery takotsubo syndrome

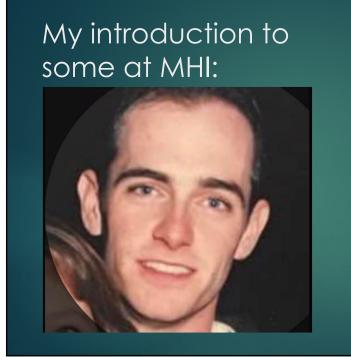
OPEN AND ENROLLING / EPIC message: Research MHIF Patient Referral

CONDITION: Takotsubo syndrome (TS)	PI: Retu Saxena, MD Co-I: Scott Sharkey, MD	RESEARCH CONTACTS: Steph Ebnet stephanie.ebnet@allina.com 320-291-8950	SPONSOR: MHIF IIR
		Sarah Schwager sarah.schwager@allina.com 319-350-9643	

DESCRIPTION: This study will use the new respiratory motion-corrected automated in-line perfusion mapping stress CMR protocol to quantify regional myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) in TS patients resulting in a "myocardial perfusion map" which can be correlated with a "myocardial contraction map."

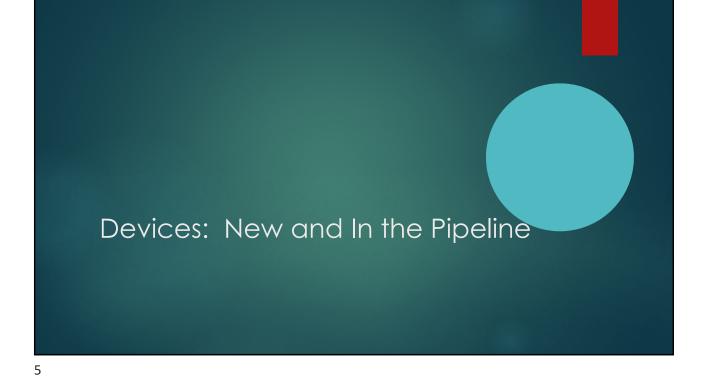
CRITERIA LIST/ QUALIFICATIONS:


Inclusion:


- Admitted with acute TS without significant coronary artery obstruction as defined on invasive coronary angiogram or CT coronary angiogram
- Typical apical or mid-ventricular ballooning pattern based on initial echocardiogram or left ventriculogram
- Age > 18 years

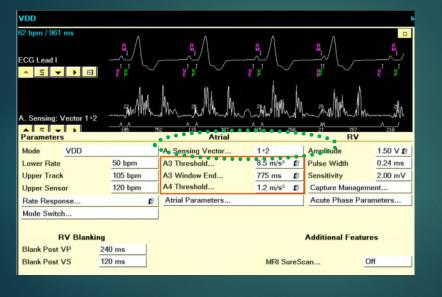
Exclusion:

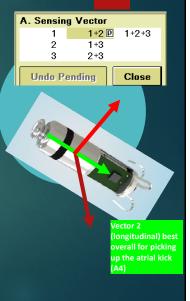
- Significant acute or chronic renal disease (dialysis or estimated glomerular filtration rate <30 ml/min/m2)
- Contraindication to adenosine or gadolinium
- Decompensated acute heart failure (need for mechanical ventilation, vasopressor treatment of hypotension, mechanical circulatory support)
- Pregnancy or lactation
- Atrial fibrillation or sustained ventricular tachycardia/ventricular fibrillation
- Asthma requiring hospitalization or oxygen dependent COPD
- Bradycardia or advanced heart block unless pacemaker present



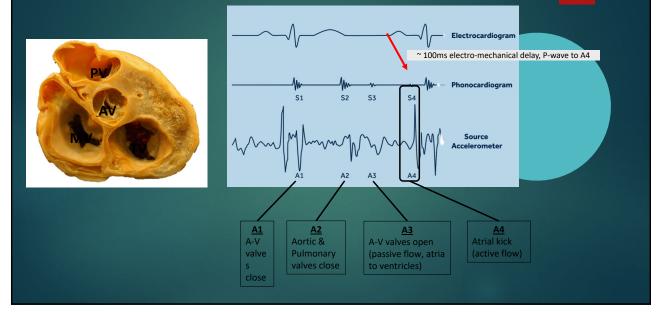
Methods/Objectives

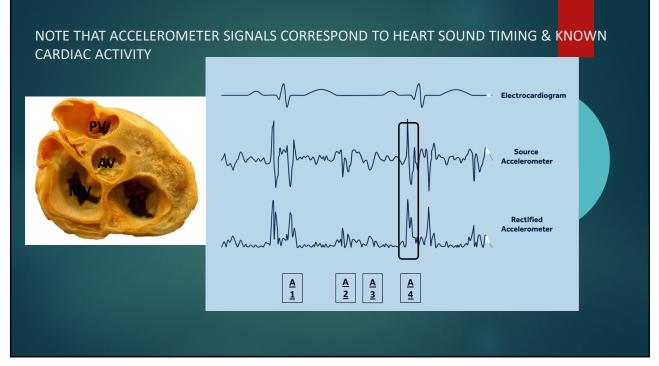
- ▶ Review of "important" articles from 2020
 - ▶ Purely subjective.
 - Avoided articles focusing on technical EP topics.
 - ► No COVID related articles.
- ► Objectives:
 - Identify advances and potential advances for implantable devices.
 - ► Identify limits in monitoring tech.
 - ▶ List some newer data on atrial fibrillation topics.

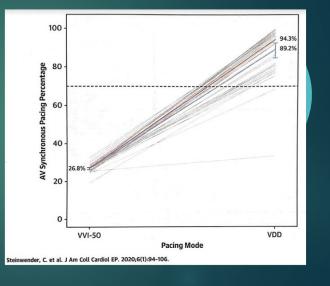



Atrioventricular Synchronous Pacing Using a Leadless Ventricular Pacemaker

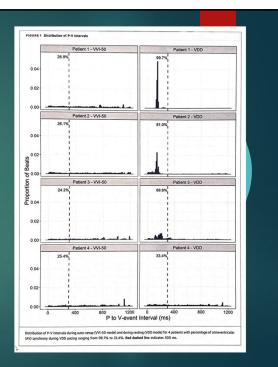
Results from the Marvel 2 Study (Steinwender et al, JACC EP, 2020; 6: 94-106).


- Built off Marvel study (Chinitz et al., Heart Rhythm, 2018; 15: 1363-1371).
 - ▶ 64 patients (33 with high degree AV block).
 - Accelerometer-based atrial sensing is feasible and improves AVS.
- ▶ 75 patients from 12 centers. 40 had predominantly SR with CHB.
- Downloaded accelerometer-based algorithm.
- Primary efficacy objective was to demonstrate superiority of algorithm to provide AV synchronous (VDD) pacing versus VVI-50 pacing (SR with CHB).
- Safety endpoint: no pauses or heart rates of >100 bpm.

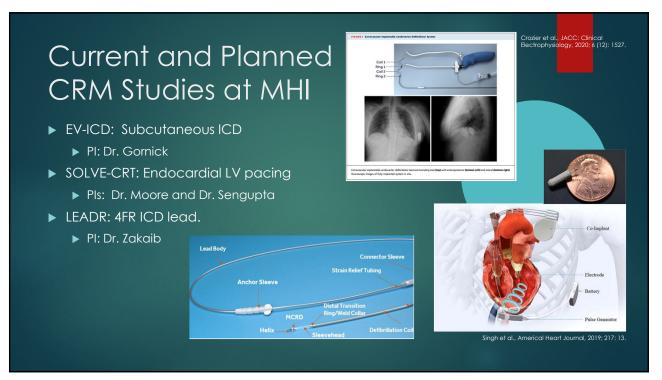

How does algorithm work? Sensing Vectors



9

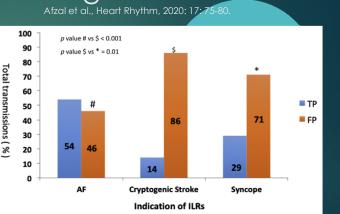

AV Synchronous Pacing %

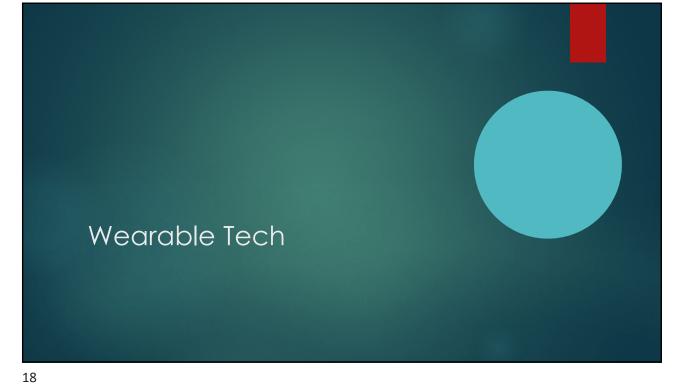
- Mean AV synchrony pacing % from 26.8% → 89.2% with VDD pacing.
- 94.3% median AV synchrony at rest.
- 95% of patients (38/40) had
 >/=70% AV synchrony.
- 8.8% improvement in SV (based on LVOT VTI).


Variable Response to Algorithm

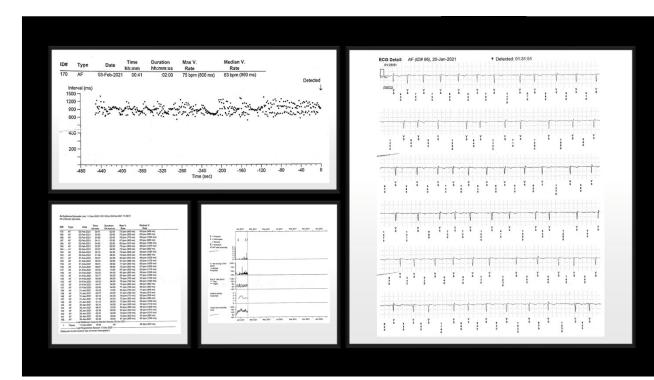
- Bottom tile shows no response but some degree of "AV synchrony"
 - Some pts have periods of AV synchrony.
 - Some P waves fortuitously fall just before V pacing.
- Garweg et al., Heart Rhythm, 2020; 17: 2037-2045.
 - Looked at 64 patients in MARVEL 2 with visible P waves.
 - High AVS = good A4 signal (good atrial mechanical function).
 - Predictors of good A4 signal amplitude
 - ► E/A ratio <0.94
 - ▶ Low sinus rate variability.

Appropriate Micra AV Patients


- ▶ Lack of atrial pacing indications.
- ► Infrequent pacing.
- Vascular access issues.
- Sedentary patients.
- Other comorbidities.


Incidence of false (+) transmissions during remote monitoring with ILRs

- 695 remote transmissions on 559 pts over 4 weeks
 - ► AF surveillance: 321
 - ► Cryptogenic stroke: 168
 - ▶ Syncope: 70
- Primary reason for FP:
 - Scheduled: signal dropout and undersensing.
 - ► Alert: ectopy.
- ► ADJUDICATION!!!
 - ▶ 30-45 min for device RN+EP



15

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

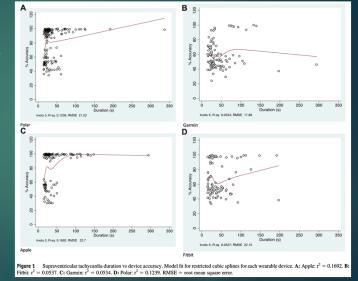
"It all started when I got my Apple Watch."

Wearables:

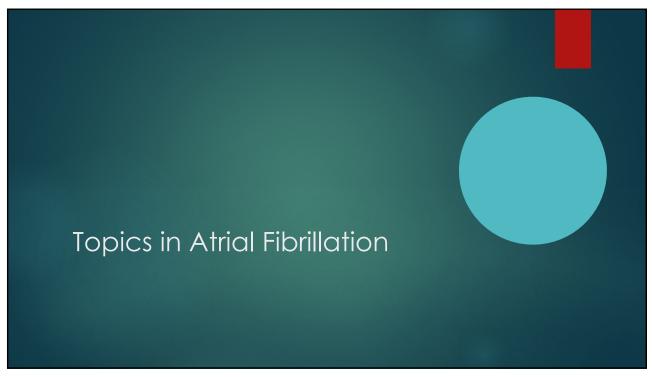
- ▶ Market of 27.49 billion in 2026.
- ▶ 9% in 2014 → 33% in 2018.
- By 2022: estimated 67 million users in US.

by 67 million people will use a wearable in the US in 2022'	50% of consumers want to track their cardiac health?	68% of doctors intend to use wearables for patient monitoring ⁶	C 1000+ trials are conducted using a wearable device	
The Consumer	The Patient	The Physician	The Researcher	
Daily health tracking	Enhanced patient-p	hysician relationship	Facilitating large- scale recruitment	
Early detection of silent	CVD and risk factors	Help in accurate diagnosis	Improve participants engagement	
Prediction and prevention of future	Real-time continuous mor	nitoring of chronic diseases	Reduction in financial burden	
CVD	Medication adherence	Remote collection of daily	changing objective data	
Promoting preventive	behavioral change	Enable precision medicine approach	Defining novel	
Promoting preventive Control over personal health data			Defining novel clinically relevant endpoints	

19


Table 5Summary of value	lidity, representing sens	itivity and specificity of
eligible studies. Research	Sensitivity	Specificity
Chan & Choy ^[11]	98%	29.2%
Chan et al ^[12]	75% (95% Cl 70-80%)	98.2% (95% CI 59.3-70.5
Desteghe et al ^[13]	54.5%-78.9%	97.5%-97.9%
Evans et al ^[14]	Unreported	Unreported
Halcox et al ^[15]	Unreported	Unreported
Lown et al ^[16]	87.8% (95% CI	98.8% (95% Cl
	78.7%-93.9%)	96.9%-99.6%)
Lowres et al ^[6]	98.5%	91.4%
Lowres et al ^[17]	94.6% (95% Cl,	92.9% (95% Cl,
	85.1–98.9)	92.0–93.8
Soni et al ^[18]	Unreported	Unreported
Soni et al ^[19]	Unreported	Unreported
Tarajki et al ^[20]	100%	97%

Effectiveness of AliveCor (Kardia mobile) device for AF screening Hall et al., Medicine, 2020; 99: 30

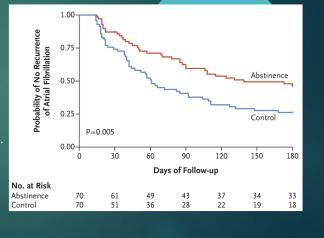

-Rates of AF detection: 0.8-36% -Rather good. -Does not pick everything up and may still be wrong: patient education!

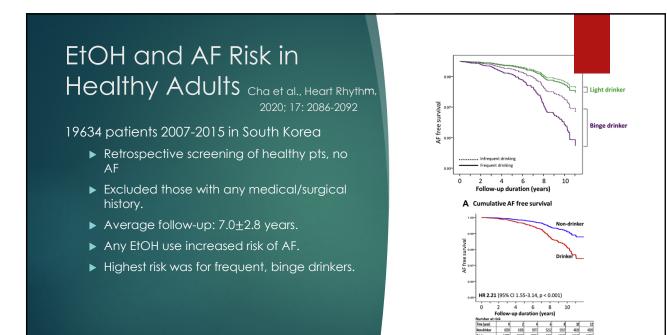
Wearable Accuracy in SVT Sequeria ta al., Heart Rhythm, 2020; 1

- Device placed on wrist during EPS for SVT on 52 patients.
- All devices inaccurate at HR detection of short SVT.
- If an elevated heart rate is detected, it is likely real.
- Some devices are accurate at detecting elevated HRs during longer SVT.

7:854-859

Reduced Risk of Dementia/CI with OAC for AF Mongkhon et al., Heart Rhythm, 2020; 17: 706713

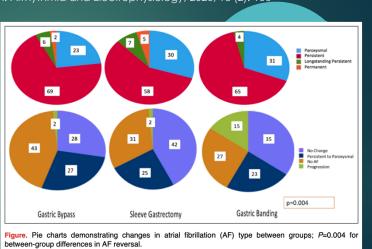

- Retrospective cohort study.
 - ▶ UK 1° care data 2000-2017.
 - ▶ 84521 with AF
 - ▶ 35245 on OAC
 - ▶ 49276 not
- 10% lower risk in patients on OAC versus not.
- No difference in warfarin vs DOACs
- Increased risk of dementia in patients on OAC/antiplatelet Rx


Subgroup	Count			Haza	rd Ratio			Effect_size	P_interaction
Heart failure Yes No	6939 77582			-				0.87 (0.71-1.05) 0.90 (0.85-0.95)	0.739
Hypertension Yes	5559 78962		-					0.76 (0.62-0.94)	0.1147
Age 75 years old or more Less than 75 years old Diabetes	42515			4				8.93 (8.88-1.82)	0.7317
Yes	8 ^{27,44}		-	1				8:86 (8:85-1:14)	0.7791
Stroke/TIA/SE	79202			•				8.86 (8.72-1.94)	0.6631
Coronary artery disease No Gender	77701			1				8:87 (8:72-1:95)	0.7002
CHA2DS2VASC score	46258 38263			1				0.87 (0.80 -0.94) 0.94 (0.87-1.01)	0.1779
2 or more Less than 2 HASBLED score	58584 25937			- 1				8:85 (8:99-1:81)	0.2196
3 or more Less than 3	37544			2				8:83 (8:86-1:91)	0.4227
AF treatment Bhythm or rate control Procedural treatment	65120 2424		-	4	•			8.86 (8.86-0.98)	0.7181
All patients								0.90 (0.85-0.95)	
			AC Bette		1	Better →			
		0.0	0.5	1.0	1.5	2.0	2.5		

23

EtOH Moderation and AF Recurrence Voskoboinik et al., NEJM, 2020; 382: 20-28

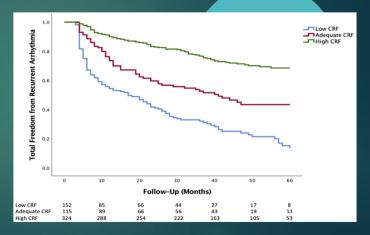
- Prospective, randomized 6 hospitals in Australia, 140 patients.
 - ▶ AF and 10+ EtOH drinks/week.
 - ▶ Abstinence: $16.8\pm7.7 \rightarrow 2.1\pm3.7$ (complete: 61%)
 - ► Control: $16.4 \pm 6.9 \rightarrow 13.2 \pm 6.5$
 - Endpoints after 2 week blanking period
 - ▶ Freedom from AF recurrence at 6 months. ▶ Abstain: 53% versus 73%
 - ▶ AF burden over 6 months.
 - ▶ Abstain: 0.5% versus 1.2%



25

Impact of Bariatric Surgery on AF

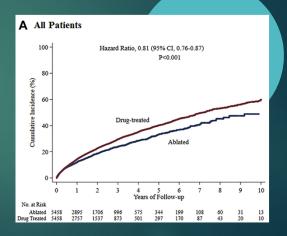
Type Donnellan et al., Circulation: Arrhythmia and Electrophysiology, 2020; 13 (2): 106


- Retrospective 440 consecutive morbidly obese patients (2007-2013).
- 220 Control
 - ▶ 10.1% weight loss
 - ► No AF reversal
- 220 underwent BS (loss%/AF reversal%)
 - ► Gastric bypass: 25/70
 - ► Sleeve gastrectomy: 19/56
 - ► Gastric banding: 16/50
- No benefit in long-standing or permanent AF.

Higher Cardiopulmonary Fitness Associated with Lower Recurrence after AF ablation

Donnellan et al., Heart Rhythm, 2020; 17: 1687-1693.

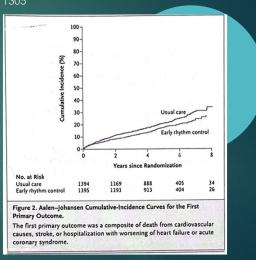
- 591 consecutive patients
 - ▶ Retrospective 1/2012-1/2018.
 - Undergoing ablation for AF.
 - Had exercise stress test within 12 months prior to ablation.
- 3 groups
 - ▶ Low CRF: <85% predicted METs
 - Adequate CRF: 85-100%
 - ► High CRF:>100%
 - Similar patient characteristics between 3 groups.
- Outcomes: mean f/u 32 months.
 - Arrhythmia recurrence: 79%, 54% and 27.5%
 - Death: 11%, 4% and 2.5%

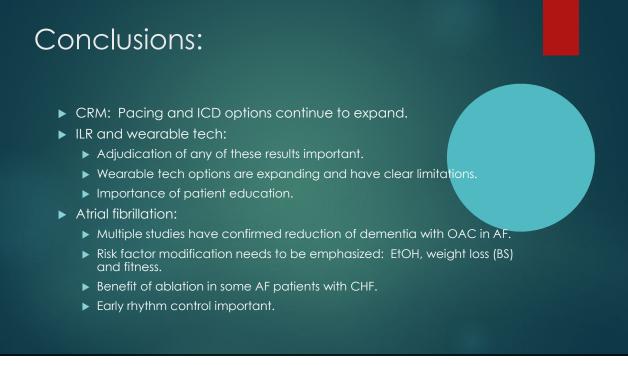


27

Generalizability of CASTLE-AF Trial: Does it apply to general practice?

Noseworth et al., Heart Rhythm, 2020: 17: 1057-1065


- Large retrospective database
 - ▶ 289831 AF/HF patients
 - ▶ 7465 Rx with ablation
 - > 282366 Rx with medical therapy.
- CASTLE-AF applicable population?
 - ▶ 7.8% met CASTLE-AF eligibility
 - ▶ 91% failed inclusion criteria.
 - ▶ 15.5% failed exclusion criteria.
- Primary endpoint: composite of death and HF hospitalization.
 - 18% reduction
 - ▶ 38% reduction in CASTLE-AF.



Early Rhythm Control of Atrial Fibrillation Camm et al., NEJM, 2020, 383: 1305

Randomized 2789 patients (135 centers)

- Diagnosed within last year.
- 75 or older, prior TIA/stroke or at least 2 criteria (CHADSVASc +CKD and LVH)
- Median time since diagnosis: 36 days.
- Early rhythm control (abl or AAD) versus usual care (Rx guided by symptoms)
- Primary endpoints
 - Composite of CV death, stroke or hospitalization for CHF or ACS.
 - Hospitalization days.
- Results
 - No difference in hospital days.
 - 249 versus 316 patient events favoring early rhythm control (HR: 0.79, p=0.005).

