MHIF FEATURED STUDY:OPEN and ENROLLING:OCS DCD Heart CAPEPIC message to Research MHIF Patient Referral

CONDITION:	PI:	RESEARCH CONTACT:	SPONSOR:
Heart Failure / Transplant	Karol Mudy, MD	Kari Thomas	TransMedics, Inc.
		Kari.M.Thomas@allina.com 612-863-7493	

DESCRIPTION: The Portable Organ Care System (OCS[™]) Heart for Resuscitation, Preservation and Assessment of Hearts from Donors After Circulatory Death Continued Access Protocol (OCS DCD Heart CAP)

To enable continued clinical access to DCD heart transplantation in the U.S. and to continue to collect additional data on the performance of the OCS Heart System to resuscitate, preserve and assess hearts donated after circulatory death for transplantation to increase the pool of donor hearts available for transplantation.

A prospective, single arm, continues access protocol.

CRITERIA LIST/ QUALIFICATIONS:

Donor Heart Inclusion

- Maastricht Category III DCD donor, defined as expected death after the withdrawal of life-supportive therapy (WLST)
- Donor age 18-49 years old inclusive
- Warm ischemic time (WIT) ≤ 30 mins, with warm ischemic time defined as: Time from when
- mean systolic blood pressure (SBP) is < 50 mmHg or peripheral saturation < 70% to aortic crossclamp
- and administration of cold cardioplegia in the donor.

To date, MHIF has had eight successful uses of the TransMedics Organ Care System (OCS™), aka "Heart in the Box"

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship	Company
Modest Consulting Fees	SINO Medical Sciences Technologies, Inc.
Significant Consulting Fees	Boston Scientific Corporation
Significant Consulting Fees	Elixir Medical, Inc.
Significant Consulting Fees	Svelte Medical Systems, Inc.
Significant Consulting Fees	Caliber Therapeutics/ Orchestra Biomed
Significant Consulting Fees	Shockwave
Major Stock Shareholder/Equity	Ablative Solutions, Inc.

Per Lesion	Xience/Promus DES n=28 Subjects n=30 Lesions	Svelte DES n=29 Subjects n=35 Lesions	P value
Mean Stent Diameter Procedure, mm	2.81 ± 0.34	2.90 ± 0.50	0.44
Mean Stent Diameter 12-Month, mm	2.93 ± 0.36	2.88 ± 0.43	0.65
Mean Plaque Burden Procedure (% Area)	49.35 ± 5.83	49.37 ± 7.71	1.00
Mean Plaque Burden 12-Month (% Area)	56.97 ± 5.88	57.07 ± 6.98	0.95
In-Stent Obstruction Volume Procedure, %	20.15 ± 16.79	15.28 ± 11.66	0.22
In-Stent Obstruction Volume 12-Month, %	22.15 ± 14.77	18.93 ± 20.21	0.53
NIH Volume 12-Month, %	11.90 ± 8.13	14.11 ± 6.29	0.26
ISA Procedure, %	40.7%	14.3%	0.04
ISA 12-Month, %	15.4%	0.00%	0.04
ISA Late Acquired, %	8.7%	0.00%	0.49

9 + 12 Month Follow-up (n=45)		
Variable	Post-Procedure	9 + 12 Month Follow-up
	In-Segment	
.VD Interp (mm)	2.93 ± 0.38	2.90 ± 0.36
/LD (mm)	$\textbf{2.56} \pm \textbf{0.31}$	2.45 ± 0.34
bDS	12.14±8.7	15.0 ± 10.1
.cute gain (mm)	$\textbf{1.44} \pm \textbf{0.36}$	
alloon-Artery Ratio	$\textbf{1.14} \pm \textbf{0.09}$	
ate Lumen Loss (mm)		0.11 ± 0.14
· · ·	In-Bioadaptor	I
.VD Interp (mm)	$\pmb{2.95 \pm 0.36}$	2.92 ± 0.36
/LD (mm)	$\textbf{2.74} \pm \textbf{0.30}$	2.64 ± 0.36
ةDS	$\textbf{6.69} \pm \textbf{6.8}$	9.3 ± 10.2
cute gain (mm) (Mean ± SD)	$\textbf{1.62}\pm\textbf{0.34}$	
ate Lumen Loss (mm) (Mean ± sp)		0.11 ± 0.17
ate Lumen Loss (mm) (Median, IQR)		0.03 (0.01, 0.17)

Evolution of	of DEBs: Dru	gs, Coatings	and Beyond
	1 st -Generation Paclitaxel-Coated Balloon	2 nd -Generation Sirolimus-Coated Balloon	3 rd -Generation Sirolimus- <mark>Eluting</mark> Balloon
	Crystalline / Non- Crystaline Amorphous Coating	Spray-Coated Nanocarrier ¹ / Microparticle Coating ² / Spray-Coated Crystalline ³	Nanosphere-Encapsulated (Particle Delivery via Microporous Balloon, w/out Coating)
	Ef	ficacy	
Drug	ΡΤΧ	SIR	SIR
Elution Control	-	-	++ Mimics DES
Dose Uniformity	-	?	+
	Si	afety	
Coating	YES	YES	NO
Particulate Debris/ Microembolization	+	+	No Particulates
Drug Loss in Transit	+	+	No Drug Loss in Transit
Drug Deposition	+/-	+ / - Endo-luminal	+ + Trans-mural
¹ Concept M	Medical MagicTouch; ² Med Alliance	Selution; ³ B. Braun Sequent Please Si	rolimus

Challenges With Coronary Calcification The greater the arc, length, or thickness of calcium, the greater the likelihood of stent underexpansion¹ Asymmetrical stent Stent expansion at 16 atm (%) expansion: up to 50% of stents 100 R=-0.8, p=0.0001* deployed in calcified lesions² 90 Stent underexpansion* and 80 poor apposition: 70 · associated with increased ischemic events at 1 year³ 60 *Independent predictor of ST and 80 50 100 150 200 250 300 50 **Restenosis** Arc of calcium (degrees) . Mintz, G; I. J Am Coll Cardiol Imaging 2015;8(4): 461-71. . Chambers JW, et al. J Am Coll Cardiol Intv 2014; 7:510-8. . Généreux P, et al. JACC 2014; 63(18);1845-54 . Vavarunakis et al. Catheter Cardiovasc Interv 2001;52:164-172 Increase Arc of Ca++ leads to decrease in stent expansion² Christ Hospital

Angiographic	Angiographic Complications		DISRUPT CAD III	
Core Lab Analysis	Immediately Post-IVL	Final Post-stent		
Any serious angiographic complication	2.6%	0.5%		
Severe dissection (Type D-F)	2.1%	0.3%		
Perforation	0.0%	0.3%		
Abrupt closure	0.0%	0.3%		
Slow flow	0.6%	0.0%		
No-reflow	0.0%	0.0%		
		TCT CONNEC		

	No IVL-induced capture (N=245)	IVL-induced capture (N=171)	<i>P</i> value
Pre-procedure heart rate, bpm	69.0 ± 11.9	65.9 ± 11.4	0.009
Drop in systolic BP during procedure	24.5%	40.5%	0.0007
Magnitude of systolic BP decrease, mmHg	23.5 ± 15.0	18.9 ± 14.2	0.07
Sustained ventricular arrhythmia during or immediately after IVL procedure	0.4%	0.0%	1.0

	Pre-IVL N=97	Post-IVL _{N=92}	Post-stent N=98
At MLA site			
Minimum Lumen area, mm²	$2.2 \pm 0.8^{*}$	3.6 ± 1.4*	6.5 ± 2.0*
Maximum Area stenosis	72 ± 12%*	56 ± 16%*	22 ± 19%*
At Maximum Ca⁺⁺ site			
Maximum calcium angle, °	293 ± 77		
Maximum calcium thickness, mm	0.96 ± 0.25		
Stent expansion			102 ± 29%
At MSA site			
Minimum stent area, mm ²			6.5 ± 2.1
Any malapposed strut			4.1%

Innovation in Coronary Intervention: Conclusions DISRUPT

- Stent related adverse events (TLF;ST) are influenced by stent strut thickness. The role of strut geometry remains to be determined.
- The 2-4% annualized rate of adverse events beyond 1-year after stent implant regardless of device appears related to the common presence of a metallic prosthesis that constrains and distorts the vessel. The impact of DynamX Bioadaptor on this annualized event rate remains to be determined.
- Drug delivery without a scaffold (DCB,DEB) will enter IDE evaluation for treatment of ISR and small vessels (where stent strut thickness/volume is exaggerated)
- Vascular calcium increases early and late complications after stenting due to stent malapposition and under-expansion.
- IVL safely improves transmural vessel compliance, reduces fibro-elastic recoil and mitigates high pressure balloon inflation (barotrauma) by creating multi-plane, circumferential and longitudinal calcium fractures.

