MHIF FEATURED STUDY: CLBS16-P02 FREEDOM Study

OPEN and ENROLLING:

EPIC message to Research MHIF Patient Referral

CONDITION:	PI:	RESEARCH CONTACTS:	SPONSOR:
Coronary Microvascular	Jay Traverse, MD	Jane Fox, RN	Caladrius Bisoscience
Dysfunction without obstructive Coronary Artery Disease (CAD)		Jane.Fox@allina.com 612-863-6289	

DESCRIPTION: Blinded randomized study comparing IC delivery of apheresis derived (after G-CSF administration) autologous CD34+ cells versus placebo.

Reduced CFR is a risk factor and these are patients with chronic chest pain thought to be secondary to microvascular dysfunction. This disease adversely affects women; typical patients experience angina without obstructive coronary artery disease (CAD).

CRITERIA LIST/ QUALIFICATIONS:

Inclusion

- Age > 18
- Experiencing angina > 3 times a week
- No obstructive CAD
- CCS Class II-IV

Exclusion

- Active Inflammatory or autoimmune disease
- Sickle Cell disease
- LVEF < 30%

Creating a world without heart and vascular disease

Mechanical Circulatory Support in the Cath Lab: Where are We Now?

Raviteja R. Guddeti, MD Interventional Cardiology Fellow

Objectives

- To understand the indications for mechanical circulatory support in the cath lab
- To review evidence for mechanical circulatory support
- To identify patient selection criteria for mechanical circulatory support

MHIF Cardiovascular Grand Rounds | May 17, 2021

Mechanical Circulatory Support in Cardiogenic Shock secondary to AMI

Cardiogenic Shock

- "A state of critical end-organ hypoperfusion primarily due to cardiac dysfunction"
- Hypotension (SBP <90 mmHg or need for vasopressors) and signs of impaired organs perfusion, reduced cardiac index (CI <1.8 or <2.2 L/min/m² with cardiac support) or increased left ventricular filling pressure (PCWP >15 mmHg)

- MHIF Cardiovascular Grand Rounds | May 17, 2021
 Cardiogenic shock complicates 5% to 10% of acute MI cases
- Common causes of cardiogenic shock in acute MI

Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock. Catheter Cardiovasc Interv. 2019;1-9. https://doi.org/10.1002/ccd.28329 For more information, please visit: www.scai.org/shockdefinition

© 2019 Society for Cardiovascular Angiography and Interventions

Pathophysiology of Cardiogenic Shock

Nature Reviews | Cardiology

Options for Mechanical Circulatory Support

Potential Benefits of Mechanical Circulatory Support

- Maintain vital organ perfusion, thereby preventing systemic shock syndrome
- Reduce intracardiac filling pressures, thereby reducing congestion and/or pulmonary edema
- Reduce left ventricular volumes, wall stress, and myocardial oxygen consumption
- Augment coronary perfusion
- Support the circulation during complex interventional procedures
- Limit infarct size

Intra-aortic Balloon Pump

Case

- A 90 y.o. male with history of CAD s/p multiple stents to LAD, D1, rPDA, and hyperlipidemia, presents with chest pain.
- Acute inferior STEMI with complete heart block with junctional escape rate at 43 bpm and on-going symptoms.
- Deteriorating with systolic blood pressure of 80 mmHg and acute distress.
- Multiple V fib episodes needing shocks, amiodarone, pressors

Coronary Angiogram

- Most basic of all MCS devices
- Has been in use since the 1960s
- Inflation of **helium** filled balloon during diastole (counter pulsation) and actively deflating in systole

 Coronary perfusion
 LV afterload
 Myocardial O₂ demand
 Myocardial O₂ supply

IABP SHOCK II Trial

Design	Randomized, prospective, open label, multicenter trial
Patients	600 patients with cardiogenic shock complicating acute MI
Intervention	IABP (301) vs. no IABP (299)
Primary Outcomes	30-day all cause mortality
Secondary Outcomes	Serum lactates, creatinine clearance, CRP, SAPS II

MHEALEVASC Glinical Quitcomes.				
Outcome	IABP (N=300)	Control (N = 298)	P Value	Relative Risk with IABP (95% CI)
	number	(percent)		
Primary end point: all-cause mortality at 30 days	119 (39.7)	123 (41.3)	0.69	0.96 (0.79–1.17)
Reinfarction in hospital	9 (3.0)	4 (1.3)	0.16	2.24 (0.70–7.18)
Stent thrombosis in hospital	4 (1.3)	3 (1.0)	0.71	1.32 (0.30–5.87)
Stroke in hospital	2 (0.7)	5 (1.7)	0.28	0.40 (0.08–2.03)
Ischemic	2 (0.7)	4 (1.3)	0.45	0.49 (0.09–2.71)
Hemorrhagic	0	1 (0.3)	0.50	—
Peripheral ischemic complications requiring intervention in hospital	13 (4.3)	10 (3.4)	0.53	1.29 (0.58–2.90)
Bleeding in hospital*				
Life-threatening or severe	10 (3.3)	13 (4.4)	0.51	0.76 (0.34–1.72)
Moderate	52 (17.3)	49 (16.4)	0.77	1.05 (0.74–1.50)
Sepsis in hospital	47 (15.7)	61 (20.5)	0.15	0.77 (0.54–1.08)

Thiele et al; N Engl J Med. 2012;367:1287–1296

- Long-term outcomes:
 - No difference between the groups for all-cause mortality (66.3% vs 67%), recurrent MI, repeat revascularization

- Cross over rate: 14.2%
- Relatively under-powered
- Timing of IABP insertion: at the discretion of the operator
 - 83% had IABP inserted after PCI

- Abdel-Wahab et al:
 - 48 patients (26 pts IABP before PCI and 22 controls IABP after PCI) with shock and acute MI
 - Patients with IABP before PCI had significantly lower CKMB, inhospital mortality and CVA

- In conclusion
 - Still the **most commonly** used MCS device
 - IABP modestly improve cardiac output
 - Increases coronary blood flow and decreases LV afterload
 - Clinical outcomes **unfavorable** to IABP for routine use

MHIF Cardiovascular Grand Rounds | May 17, 2021

Impella

Unloading of LV
Forward flow
LV size, pressure and wall stress
Myocardial O2 demand
PCWP

ISAR-SHOCK Trial

Design	Randomized, prospective, open label, multicenter trial
Patients	25 patients with cardiogenic shock complicating acute MI
Intervention	Impella 2.5 (n=12) vs. IABP (n=13)
Primary Outcomes	Change in CI from baseline to 30 mins after time of implantation
Secondary Outcomes	Lactic acidosis, hemolysis, and mortality after 30 days

IMPRESS Trial

Design	Randomized, prospective, open label, multicenter trial
Patients	48 patients with cardiogenic shock complicating acute MI
Intervention	Impella CP (24) vs. IABP (24)
Primary Outcomes	30-day all cause mortality
Secondary Outcomes	60-day all cause mortality, duration of mechanical ventilation, ionotropic and
	vasopressor therapy, renal replacement therapy, hospital length of stay,
	stroke, repeat revascularization, vascular and bleeding complications

- 30-day all-cause mortality:
 - 46% in Impella vs 50% in IABP: 0.96 (0.42-2.18)
- 6-month all-cause mortality:
 - 50% in Impella vs 50% in IABP: 1.04 (0.47-2.32)

- Ventilated (100%), post-arrest (92% cardiac arrest), largely comatose patients with advanced hemo-metabolic shock as evidenced by their baseline lactate of 8 → Extremely sick patients
- Most patients (83%) in IMPRESS underwent MCS implantation after revascularization.

USPella Registry

Design	Prospective, consecutive cohort from USPella registry over 38 sites between
	2009 and 2012
Patients	154 patients with cardiogenic shock complicating acute MI
Groups	Impella initiated pre-PCI (63) vs. post-PCI (91)
Primary Outcomes	Survival to discharge
Secondary Outcomes	Changes in hemodynamics, incidence of MI, stroke, repeat vascularization,
	AKI, bleeding and vascular complications

O'Neill WW et al; J Interv Cardiol. 2014;27(1):1-11.

	Odds Ratio	95% Confidence Interval	P-Value
Initiation of Impella support prior to PCI	0.37	0.17-0.79	0.01
Age	1.05	1.02-1.08	0.003
Number of inotropes	1.56	11–2.18	0.01
Cardiogenic shock onset prior to admission	2.42	1.12-5.24	0.03
Mechanical ventilation	4.59	2.02-10.42	0.0003

Table 4. Multivariate Analysis for Predictors of In-Hospital Mortality

Year	Patients	Outcomes
2018	41 AMICS pts Impella CP prior to PCI (n=41) vs. historic controls	Survival to explant was 85% vs. 51% in historic controls Post-procedure CPO was significantly higher than pre-procedure CPO (0.95 vs 0.57 ; p <0.001)
2019	171 AMICS pts Impella CP prior to PCI	Survival to discharge was 72%
2019	204 AMI/ADHF CS pts Shock team-based approach vs. historic controls	Survival at 30-days: 57.9% (2017) to 76.6% (2018) vs. 47% in 2016 historic controls
	Year 2018 2019 2019	YearPatients201841 AMICS pts Impella CP prior to PCI (n=41) vs. historic controls2019171 AMICS pts Impella CP prior to PCI2019204 AMI/ADHF CS pts Shock team-based approach vs. historic controls

Basir et al; Catheter Cardiovasc Interv 2018; 91:454-461 Basir et al; Catheter Cardiovasc Interv 2019: 93:1173-1183 Tehrani et al; J Am Coll Cardiol 2019; 73:1659-1669

39 of 115

- Schrage B et al:
 - Matched 237 patient on Impella for CS and acute MI to 237 patients with IABP (IABP cohort was taken from IABP-SHOCK II trial database)

40 of 115

- No difference in 30-day mortality (48.5% vs. 46.4%)
- More bleeding and vascular complications with Impella

Study	Year	Patients	Outcomes
Amin et al	2020	48,306 pts from the Premier Healthcare database; 4782 received Impella	Impella pts had more death: OR 1.24; bleeding: OR 1.10; and stroke: OR 1.34
Dhruva et al	2020	28,304 pts undergoing PCI for AMI and CS from the CathPCI and Chest Pain MI registries; 1680 propensity matched pairs Impella vs. IABP	More mortality and major bleeding with Impella compared to IABP

- In conclusion:
 - Impella improves axial flow by actively unloading the LV, decreasing wall stress and myocardial O2 demand
 - Use in cardiogenic shock complicating acute MI is limited based on lack of evidence
 - Timing of initiation of Impella may play a role in outcomes

TandemHeart

LV preload LV workload LV filling pressures LV wall stress Myocardial O2 demand

Blood pressure Cardiac output LV afterload

TandemHeart Investigators Group

Design	Randomized, prospective, multicenter trial		
Patients	42 patients from 12 centers with cardiogenic shock (70% from AMI)		
Intervention	IABP versus Tandem Heart		
Primary Outcomes	Hemodynamics		
Secondary Outcomes	30-day all-cause mortality		

No survival benefit

European TandemHeart Trial

Design	Randomized, prospective, multicenter trial (2000-2003)
Patients	41 patients with cardiogenic shock complicating AMI
Intervention	IABP (20) versus TandemHeart (21)
Primary Outcomes	Change in cardiac power index 2 hours after device implantation
Secondary Outcomes	30-day mortality, hemodynamic, metabolic and clinical parameters

Table 3 Haemodynamic parameters pre- and post-IABP and VAD implantation

	Pre-implantation IABP	Pre-implantation VAD	P-value	Post-implantation IABP	Post-implantation VAD	P-value
Cardiac output (L/min)	3.0 (2.5-4.0)	3.5 (3.3-4.2)	0.29	3.3 (2.9-4.3)	4.5 (4.0-5.4)	0.007
$CI (L/min/m^2)$	1.5 (1.3-2.0)	1.7 (1.5-2.1)	0.35	1.7 (1.5-2.1)	2.3 (1.9-2.7)	0.005
Blood pressure mean (mmHg)	64 (57-74)	63 (51-70)	0.50	67 (62-84)	74 (70-84)	0.38
$CPI (W/m^2)$	0.22 (0.18-0.30)	0.22 (0.19-0.30)	0.72	0.28 (0.24-0.36)	0.37 (0.30-0.47)	0.004
SVR (dyn \times s \times cm ⁻⁵)	1440 (1034-1758)	1049 (852-1284)	0.16	1388 (998-1809)	1153 (844-1425)	0.08
Heart rate (beats/min)	122 (92-130)	113 (107–121)	0.57	115 (90-125)	105 (100-116)	0.94
PCWP (mmHg)	27.0 (20.0-30.0)	20.0 (18.0-23.0)	0.02	21.5 (17.0-26.0)	16.0 (12.5-19.0)	0.003
Central venous pressure (mmHg)	13.0 (11.0-16.5)	11.0 (9.0-15.3)	0.29	12.0 (10.0-17.5)	10.0 (8.0-12.0)	0.06
PAP mean (mmHg)	32.5 (27.5-38.0)	28.0 (24.5-34.8)	0.45	28.5 (25.5-33.5)	24.5 (20.0-26.0)	0.007
Serum lactate (mmol/L)	3.8 (3.5-6.7)	4.5 (3.1-6.5)	0.53	3.25 (2.7–7.0)	2.8 (2.3-3.5)	0.03
Standard base excess (mmol/L)	-6.8 [-8.3- (-3.9)]	-5.1 [-7.5- (-4.4)]	0.74	-4.3 [-8.8- (-2.3)]	-4.3 [-6.1- (-3.3)]	0.28
рН	7.34 (7.28-7.38)	7.28 (7.24-7.36)	0.50	7.36 (7.28-7.41)	7.33 (7.31-7.40)	0.49

SVR, systemic vascular resistance; PAP, pulmonary artery pressure; values are given as median (IQR).

- In conclusion:
 - TandemHeart significantly improves hemodynamics in CS + AMI patients
 - Evidence for TandemHeart is not convincing for routine use in CS with AMI

Extra Corporeal Membrane Oxygenation

- 48-year-old male with no significant past medical history came in with chest pain (for 2 weeks). Negative stress echo few days prior.
- EKG: sinus bradycardia with nonspecific ST changes in lateral leads.
- Unresponsive, initial rhythm was v. fib → several shocks. ACLS protocol with active CPR using Lucas device.
- Bedside TEE was performed which showed incessant ventricular fibrillation

- VA-ECMO
- Use of ECMO is rapidly evolving
- Mostly retrospective observation data and meta-analysis
- Provides up to 5-6 liters/min of cardiac output

RV end-diastolic volume

Mean arterial pressure

LV afterload

- Sheu J et al:
 - 115 patients (group 1 [between 1993 and 2002]) vs. 219 patients (group 2) with acute STEMI and shock (between 2002 and 2009)
 - ECMO use only in patients with profound shock in group 2 (46 patients)
 - 30-day survival: 39% vs 72%

- Ouweneel DM et al:
 - Meta-analysis of 4 studies of patients with acute MI and cardiogenic shock
 - 33% higher survival in patients with VA-ECMO compared to IABP at 30 days
 - No difference in survival compared to TandemHeart or Impella

Brunner S et al:

Design	Single-center, randomized, open-labeled
Patients	42 patients with cardiogenic shock complicating AMI
Intervention	ECLS (21) vs. no MCS (21)
Primary Outcomes	LVEF at 30 days

- In conclusion:
 - VA-ECMO is used increasingly, especially in patients who present with cardiac arrest secondary to AMI
 - Provides the maximal support for cardiac output
 - High quality evidence is lacking

MCS in STEMI

Curran et al <u>J Cardiovasc Transl Res.</u> 2019; 12(2): 95–106_{69 of 115}

CRISP AMI Trial

Design	Randomized, open, multicenter trial
Patients	337 patients with acute anterior STEMI without shock
Intervention	IABP versus no IABP pre-vascularization
Primary Outcomes	Infarct size measured by Cardiac MRI 3-5 days after revascularization
Secondary Outcomes	All-cause mortality at 6 months
	Vascular and bleeding complications at 30-days

Table 3. Cardiac Magnetic Resonance Imaging (MRI) Findings

	Total (N = 337)	IABC Plus PCI (n = 161)	PCI Alone (n = 176)	P Value
Time from symptom onset to MRI, median (IQR), d	4.0 (3.0-5.0)	4.0 (3.0-5.0)	4.0 (3.0-4.0)	.20
P	rimary End Point			
Infarct size, % of left ventricular mass				
Per-protocol analysis, No. (%)	275 (81.6)	133 (82.6)	142 (80.7)	
Mean (95% CI)	39.8 (37.4-42.1)	42.1 (38.7-45.6)	37.5 (34.3-40.8)	.06
Median (IQR)	38.8 (26.0-52.2)	42.8 (27.2-54.7)	36.2 (25.9-49.4)	
Multiple imputation analysis				
Mean (95% Cl)	39.7 (37.3-42.1)	42.1 (38.6-45.6)	37.6 (34.3-40.9)	.07
Median (IQR)	39.0 (26.0-52.3)	42.5 (27.1-55.9)	36.4 (24.9-49.9)	
Proximal left anterior descending and TIMI flow score of 0 or 1				
Per-protocol analysis, No. (%)	192 (57.0)	93 (57.8)	99 (56.3)	
Mean (95% CI)	44.4 (41.7-47.1)	46.7 (42.8-50.6)	42.3 (38.6-45.9)	.11
Median (IQR)	42.1 (30.3-54.7)	45.1 (32.7-60.8)	38.6 (29.6-51.6)	
Multiple imputation analysis				
Mean (95% Cl)	44.4 (41.7-47.1)	46.8 (42.9-50.8)	42.1 (38.4-45.7)	.08
Median (IQR)	42.5 (30.3-55.9)	45.3 (32.3-61.6)	39.2 (29.5-51.9)	

Figure 2. Event Rate of Death From 0 to 180 Days

IABC indicates intra-aortic balloon counterpulsation; PCI, percutaneous coronary intervention.

No difference in major vascular

or bleeding complications

DTU-STEMI Trial

Design	Multicenter, prospective, randomized exploratory safety and feasibility		
	trial		
Patients	50 patients with acute anterior STEMI without shock		
Intervention	Unloading by Impella CP followed by immediate revasc (U-IR) vs.		
	unloading followed by delayed revasc after 30 min (U-DR)		
Primary Outcomes	MACCE and infarct size at 30 days		
Secondary Outcomes	Infarct size measured by Cardiac MRI 3-5 days after revasc and 30-days		

Kapur NK et al; Circulation. 2019 Jan 15;139(3):337-346.

- 30-day MACCE: 12% in U-DR vs 8% in U-IR
- Infarct size at 30 days: not different

More data is needed to consider MCS before PCI to unload LV in STEMI

Guidelines

• ESC 2017 STEMI guidelines: among patients with STEMI and cardiogenic shock:

Short-term mechanical support may be considered in patients with refractory shock	llb	С
Routine intra-aortic balloon pumping is not recommended	III	В

• ACC/AHA 2013 STEMI guidelines:

The use of intra-aortic balloon pump counterpulsation can be useful for patients with cardiogenic shock after STEMI who do not quickly stabilize with pharmacological therapy	lla	В
Alternative left ventricular (LV) assist devices for circulatory support may be considered in patients with refractory cardiogenic shock	llb	С

MHIF Cardiovascular Grand Rounds | May 17, 2021

Mechanical Circulatory Support in High-risk PCI

Case

- 84 y/o female with H/O CAD s/p PCI to LCx in 2007, LAD in 2014 and 2020, severe AS came in with NSTEMI.
- Echo: Peak velocity 4.6 m/sec, mean gradient 58 mm Hg, LVEF 70%

- Not a surgical candidate given her age, frailty
- Patient was not interested in surgical options either

What is high-risk PCI?

CLINICAL

CHARACTERISTICS

- LVEF <35%
- Electrical instability
- Congestive heart failure

COMORBIDITIES

- Severe AS, MR
- Severe COPD
- ACS
- CKD
- DM II
- PVD
- H/o CVA

ANATOMICAL CHARACTERISTICS

- Unprotected LM
- Last remaining vessel
- 3v disease with SYNTAX score >33
- Distal LM bifurcation

MHIF Cardid as the Considerations for Hemodynamic Support in High-risk PCI

- Is the patient hemodynamically stable?
 - Low blood pressure
 - Active CHF
- Does the patient have enough reserve to sustain a brief ischemic insult during PCI?
 - Last remaining vessel
 - Borderline blood pressure
 - Severe pulmonary hypertension
 - Low cardiac index
 - Very low LVEF <20%
- Risk of prolonged ischemic insult risking LV injury?
 - Extensive atherectomy
 - Left dominant system with complex bifurcation lesion
 - Retrograde CTÓ with dual system compromise

Design	Prospective, open, multicenter, RCT between Dec 2005 and Jan 2009				
Patients	301 pts with severe LV dysfunction (EF ≤30%) and extensive CAD				
	(Jeopardy Score ≥8/12)				
Intervention	Elective IABP (151) before PCI vs. no IABP (150)				
Primary Outcomes	MACCE at hospital discharge (capped at 28 days)				
Secondary Outcomes	All-cause mortality at 6 months, major procedural complications, bleeding,				
	and access-site complications				

Perera D et al; *JAMA*. 2010;304(8):867-874.

- <u>In-hospital MACCE</u>: 15.2% (23/151) in elective IABP vs. 16.0% (24/150) in the no planned IABP group
- <u>All-cause mortality at 6 months:</u> 4.6% vs. 7.4% (P = 0.32).
- <u>Major procedural complications</u>: 1.3% vs 10.7%, *P* < 0.001).
- <u>Major or minor bleeding:</u> 19.2% vs. 11.3% (*P* = 0.06)

Minneapolis Heart Institute

Perera D et al; *JAMA*. 2010;304(8):867-874.

Impella in High-risk PCI

Protect I Trial

Design	Prospective multicenter feasibility trial
Patients	20 patients with LVEF <35% and undergoing high-risk PCI
Intervention	Impella 2.5
Primary Outcomes	Safety endpoint: MACCE at 30 days
	Efficacy endpoint: hemodynamic compromise during PCI (MAP <60 mm Hg
	for >10 min)

- Primary safety endpoint: 20% of patients
- No hemodynamic compromise in any patient

Protect II Trial

Design	Prospective, multicenter RCT				
Patients	448 symptomatic patients with LVEF <35% and complex 3v CAD or				
Intervention	IABP (n=225) vs. Impella 2.5 (n=223)				
Primary Outcomes	MACCE at 30 days				

Intention to Treat Analysis

	IABP (n=222)	Impella 2.5 (n=225)	Ρ	IABP (n=219)	Impella 2.5 (n=224)	Ρ
Composite of major adverse events	40.1	35.1	0.277	49.3	40.6	0.066
Death	5.9	7.6	0.473	8.7	12.1	0.244
Stroke/TIA	1.8	0.0	0.043	2.7	0.9	0.144
Myocardial Infarction	10.4	13.8	0.268	14.2	12.1	0.512
Repeat revascularization	4.1	1.3	0.075	7.8	3.6	0.056
Need for cardiac or vascular operation*	1.4	0.9	0.642	1.8	1.3	0.681
Acute renal dysfunction	4.5	4.0	0.792	4.6	4.0	0.776
Cardiopulmonary resuscitation/ventricular arrhythmia†	3.2	2.2	0.543	4.1	2.2	0.259
Aortic valve damage/increase in aortic insufficiency	0.0	0.0		0.0	0.0	
Severe hypotension requiring treatment	8.6	4.9	0.121	5.5	4.0	0.469
Angiographic failure	0.5	0.4	0.992	0.0	0.4	0.322

30 Days

90 Days

Per Protocol Analysis

_

· · · · · · · · · · · · · · · · · · ·	IABP (n=211)	Impella 2.5 (n=216)	Р	IABP (n=210)	Impella 2.5 (n=215)	Р
Composite of major adverse events	42.2	34.3	0.092	51.0	40.0	0.023
Death	6.2	6.9	0.744	9.0	11.6	0.383
Stroke/TIA	1.9	0.0	0.042	2.4	0.9	0.240
Myocardial infarction	10.9	13.4	0.425	14.8	11.6	0.340
Repeat revascularization	4.3	1.4	0.072	8.1	3.7	0.055
Need for cardiac or vascular operation*	1.4	0.9	0.634	1.9	1.4	0.680
Acute renal dysfunction	4.7	4.2	0.774	4.8	4.2	0.774
Cardiopulmonary resuscitation/ventricular arrhythmia†	3.3	2.3	0.531	4.3	2.3	0.258
Aortic valve damage/increase in aortic insufficiency	0.0	0.0		0.0	0.0	
Severe hypotension requiring treatment	9.0	4.6	0.072	5.7	3.7	0.332
Angiographic Failure	0.5	0.5	0.987	0.0	0.5	0.322

30 Days

90 Days

Hemodynamic Support Effectiveness

Cardiac Power Output (Secondary Endpoint)

Maximal Decrease in CPO on device Support from Baseline (in x0.01 Watts)

- Few important observations in this study:
 - Impella 2.5 group had more patients with CHF and h/o CABG
 - Glycoprotein IIb/IIIa inhibitor use was less in the Impella group
 - Significantly more contrast use in the Impella group (267±142 cc vs. 241±114 cc)
 - Use of **rotational atherectomy** was more frequent in the Impella group with longer duration and more runs (14.2% vs. 9%)
 - Support time was much lower in the Impella group (1.9±2.7 h vs. 8.4±21.8 h)

Protect III Post-approval Study

- Prospective, multicenter single-arm FDA post-approval study
- Interim analysis of 898 patients (571 Impella CP vs 327 Impella 2.5) presented in TCT 2019. Enrollment ongoing.
- Compared findings with Protect II data
 - Patients much older than those in Protect II
 - More pts with 3 vessel PCI
 - Significantly higher use of atherectomy 43.3% vs 14.2% in Protect II trial
 - More left main PCI 15.7% vs 11.5%
 - Much longer duration of support 6.79±21.1 h vs 1.9±2.7 h
 - Much less contrast use 204±105.6 cc vs 267±141.7 cc

• MACCE at 90 days

- Mayo clinic single-center data
 - 54 nonsurgical patients undergoing high-risk PCI TandemHeart
 - The median SYNTAX score was 33 with high predicted surgical revascularization mortality
 - Left main and multivessel PCI in 62% of patients, and rotablation in 48%.
 - Improvement in right and left heart pressures, cardiac output increased from 4.7 to 5.7 L/min during support.
 - Procedural success rate was 97% and 30-day and 6-month survival were 90% and 87%, respectively. Major vascular complications occurred in 13% of cases.

MHIF Cardiovascular Grand Rounds | May 17, 2021

Algorithmic Approach to MCS

Practical Approach to Percutaneous MCS

- Step 1: Prompt recognition of patients with cardiogenic shock or impending shock, and high-risk PCI features
- **Step 2**: Multidisciplinary team approach (critical care, advanced heart failure, interventional cardiology and cardiothoracic surgery)
- Step 3: Identifying disease severity from shock or PCI perspective to pick the right device

Comparison of Devices

FIGURE 2 Comparison of MCS Devices and Their Impact on Cardiac Flow

MHIF Cardiovascular Grand Rounds May MF, 202 Frices

	IABP	IMPELLA	TANDEMHEART	VA-ECMO
Cardiac Flow	0.3-0.5 L/ min	1-5L/ min (Impella 2.5, Impella CP, Impella 5)	2.5-5 L/ min	3-7 L-min
Mechanism	Aorta	LV → AO	$LA \rightarrow AO$	$RA \rightarrow AO$
Maximum implant days	Weeks	7 days	14 days	Weeks
Sheath size	7-8 Fr	13-14 Fr Impella 5.0 - 21 Fr	15-17 Fr Arterial 21 Fr Venous	14-16 Fr Arterial 18-21 Fr Venous
Femoral Artery Size	>4 mm	Impella 2.5 & CP - 5-5.5 mm Impella 5 - 8 mm	8 mm	8 mm
Cardiac synchrony or stable rhythm	Yes	No	No	No
Afterload	Ļ	\downarrow	1	↑ ↑↑
MAP	Ť	$\uparrow\uparrow$	$\uparrow\uparrow$	$\uparrow\uparrow$
Cardiac Flow	Ť	$\uparrow\uparrow$	$\uparrow\uparrow$	$\uparrow\uparrow$
Cardiac Power	Ť	$\uparrow\uparrow$	$\uparrow\uparrow$	$\uparrow\uparrow$
LVEDP	Ļ	$\downarrow\downarrow$	$\downarrow\downarrow$	\leftrightarrow
PCWP	\downarrow	$\downarrow\downarrow$	$\downarrow\downarrow$	\leftrightarrow
LV Preload		$\downarrow\downarrow$	$\downarrow\downarrow$	Ļ
Coronary Perfusion	Ť	Ť		
Myocardial oxygen demand	Ļ	$\downarrow\downarrow$	$\leftrightarrow \downarrow$	\leftrightarrow

Atkinson TM, et al. A Practical Approach to Mechanical Circulatory Support in Patients Undergoing PCI: An Interventional Perspective. JACC Cardiovasc Interv. 2016 May 9;9(9):871-83 of 115

Contraindications and Complications

	IABP	Impella	TandemHeart	VA-ECMO
Contraindications	Moderate to severe AR Severe PAD Aortic disease	LV thrombus Mechanical aortic valve Aortic stenosis with AVA <0.6 Moderate to severe AR Severe PAD Contraindication to anticoagulation	Severe PAD HIT DIC Contraindications to anticoagulation LA thrombus VSD Moderate to severe AR	Contraindications to anticoagulation Moderate to severe AR Severe PAD
Complications	Stroke Limb ischemia Vascular trauma Balloon rupture Thrombocytopenia Acute kidney injury Bowel ischemia Infection	Device migration Device thrombosis Limb ischemia Vascular trauma Hemolysis Infection Stroke	Air embolism Thromboembolism Device Dislodgement Cardiac tamponade Limb ischemia Vascular trauma Hemolysis Infection Stroke	Bleeding Vascular trauma Limb ischemia Compartment syndrome Acute kidney injury Hemolysis Thromboembolism Air embolism Infection Neurological Injury
Bleeding/hemolysis	+	++	++	++
Vascular complications	+	++	+++	++++

Conclusions

- Use of mechanical circulatory support devices should be individualized based on patient characteristics
- Multidisciplinary heart team approach preferably a "Shock team" is vital to the success of the program.
- More research and evidence are needed, due to paucity of highquality evidence.

Trends in use of MCS in AMI and CS

- Recent trends show a decline in use of IABP and increase in use of Impella
- Combining CathPCI and Chest Pain-MI registries
- 42.7% received an MCS device

- MCS use in cardiogenic shock and acute MI remained similar from 2015 to 2017 (41.9% to 43.1%)
- Impella use increased from 4.1% to 9.8%
- IABP use decreased from 34.8% to 30%

 More than half the hospitals did not use any MCS device for these patients

B Subset of patients who received an MCS device, with detail about specific and combinations of MCS devices

Timing of MCS Relative to Reperfusion in AMI and Shock

eart Institute

MHIF Cardiovascular Grand Rounds | May 17, 2021

• Options for LV venting in ECMO

MHIF Cardiovascular Grand Rounds | May 17, 2021

115 of 115