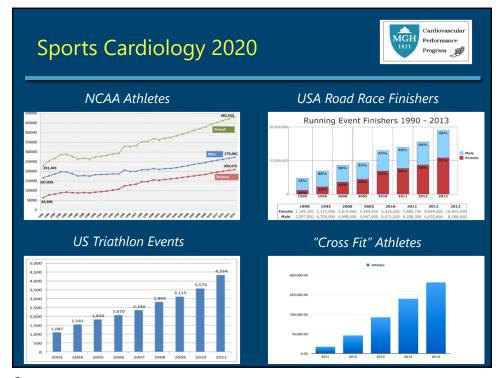
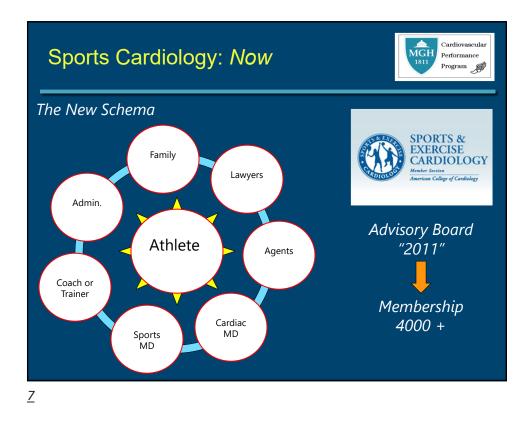
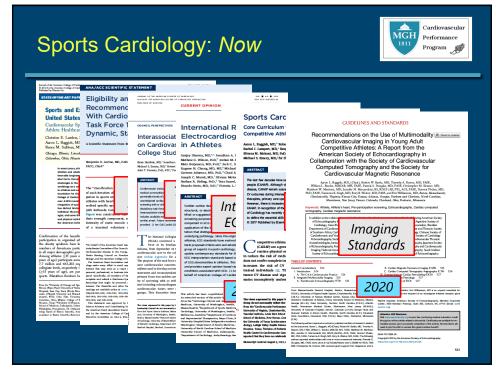
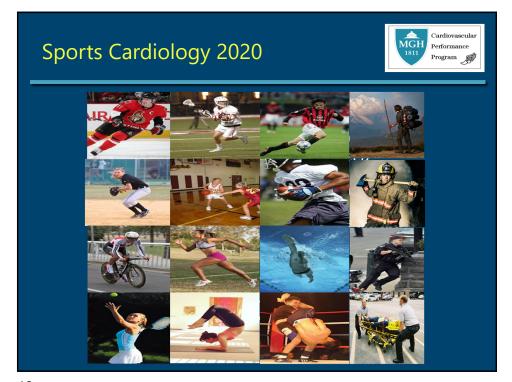


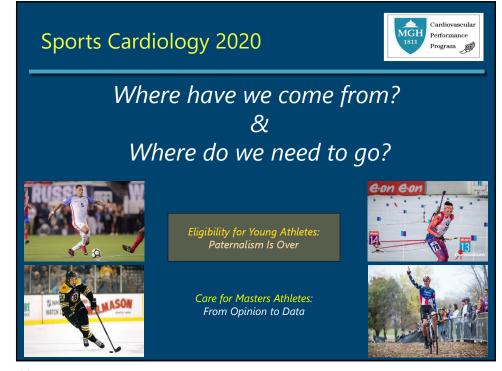
1

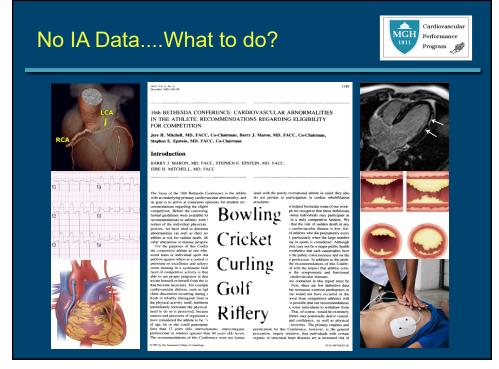






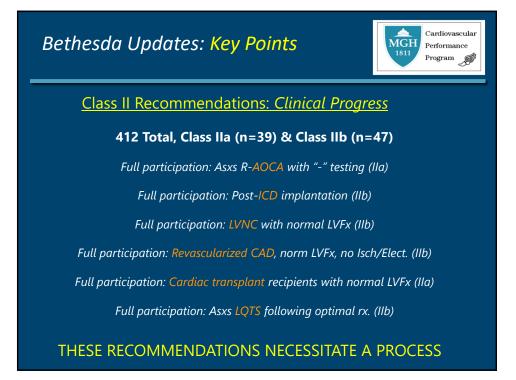






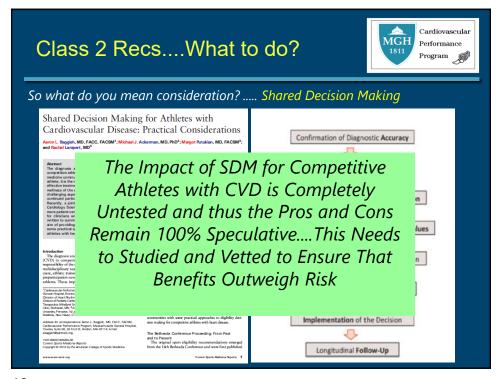
<u>11</u>

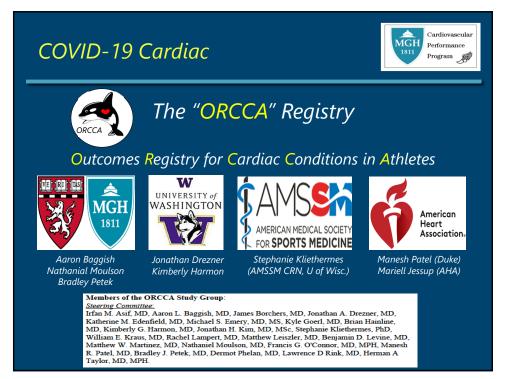
Bethesda Updates: Key Points

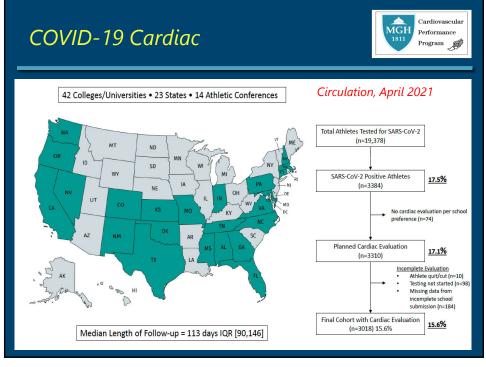


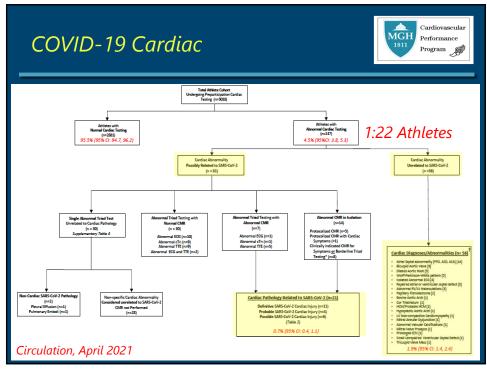
<section-header><section-header><section-header><section-header>

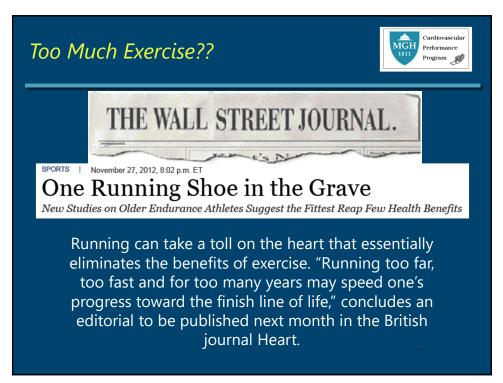
be had!!!

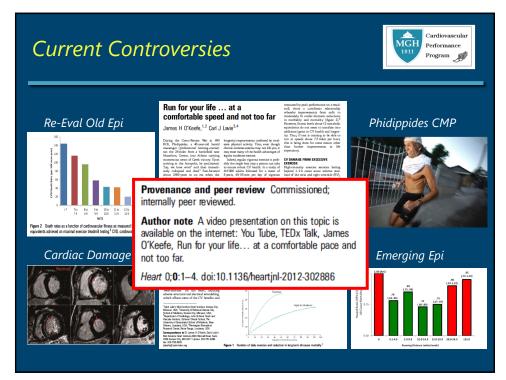

- > 15 "Task Force" documents
- Topics & Diseases
- > Disqualification & Restriction (not mgmt.)
- Geared to "competitive athletes" (HS, College, Professional)
- > Conflicting Views:
 - ➤ "Limited Control" populations
 - ➤Newly added Class 2a & 2b Recs
 - "It may be reasonable to play...."

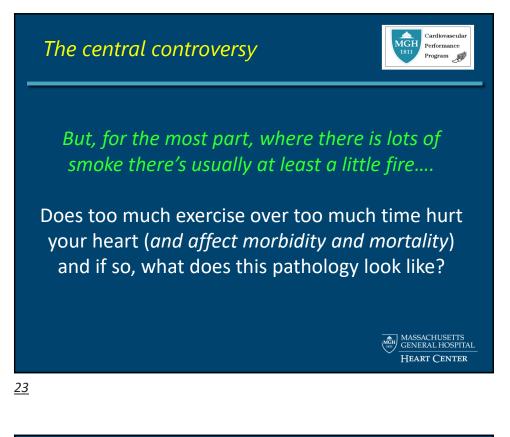

<u>13</u>

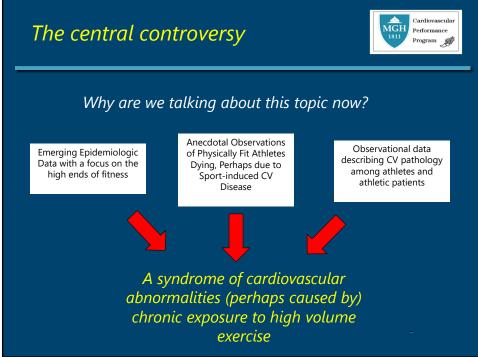

Cardiovascula MGH Class 2 Recs....What to do? Performance Program 📕 Paternalism Autonomy The Decision Making Control Spectrum Shared Decision Making Paternalism: Autonomy: Docs know best Docs don't always know Clearance is our job Patients are individuals The process is simple Medical vs. Non-medical Why make it complex? Because it is complex

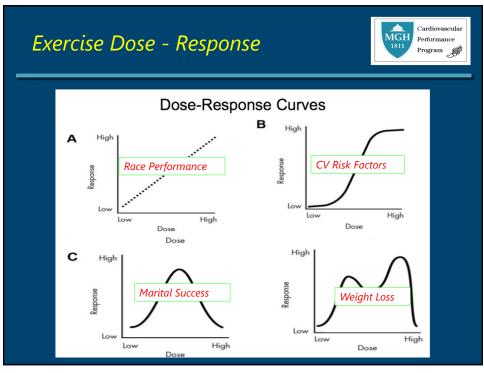

<u>15</u>


<u>17</u>

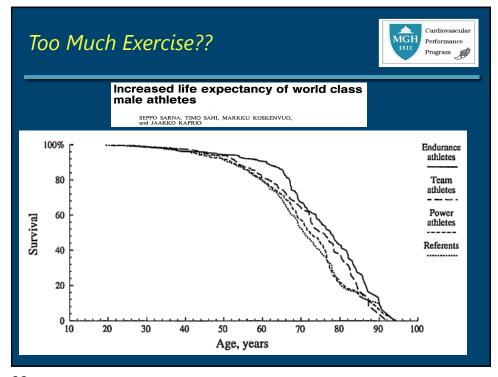


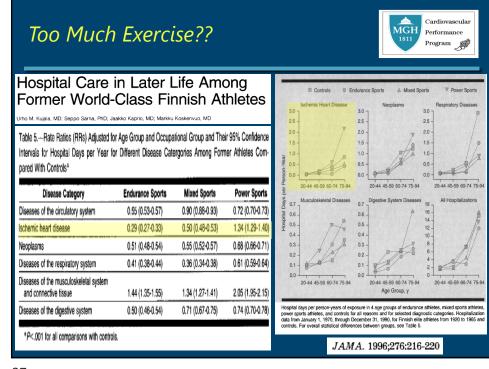


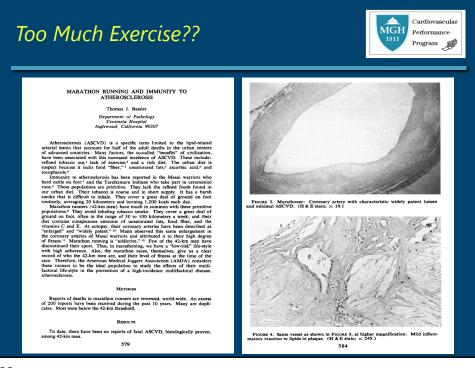


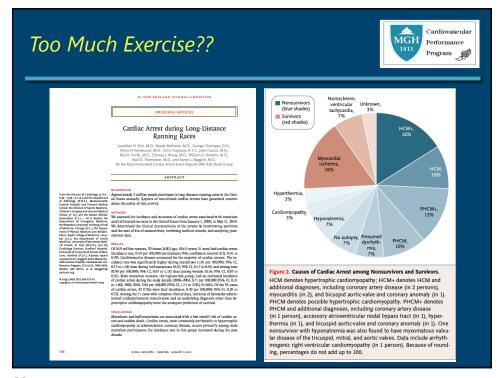


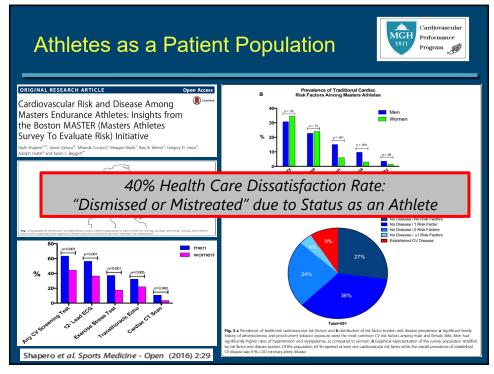
<u>21</u>

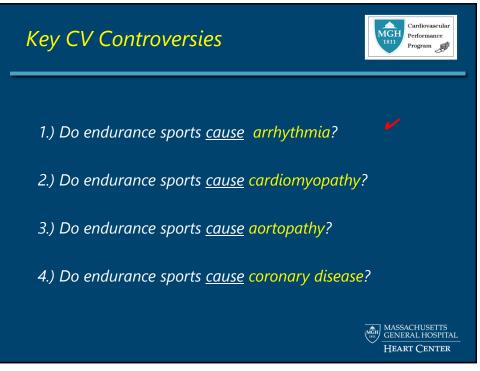


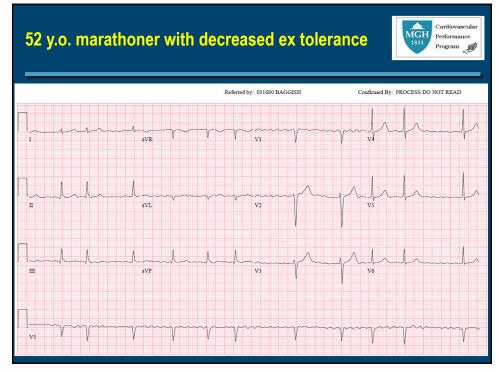




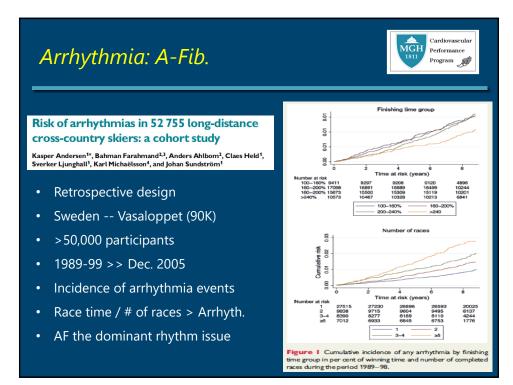

<u>25</u>

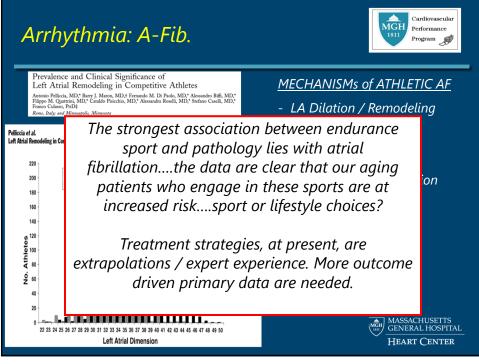




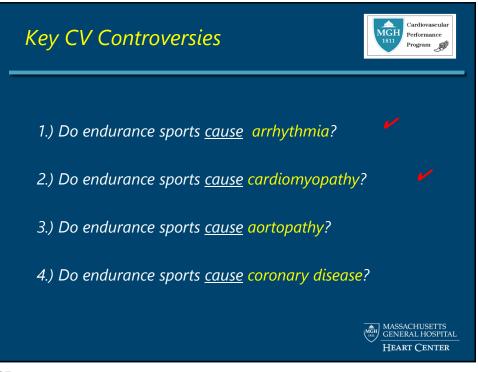


<u>29</u>

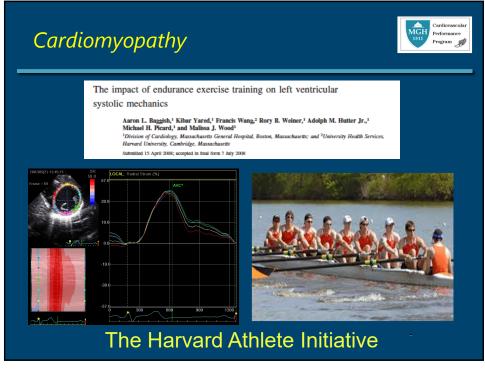

<u>31</u>

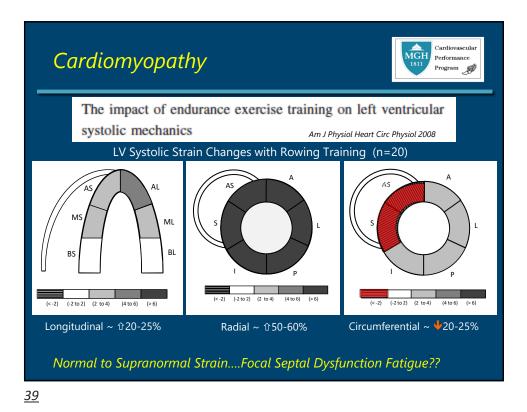


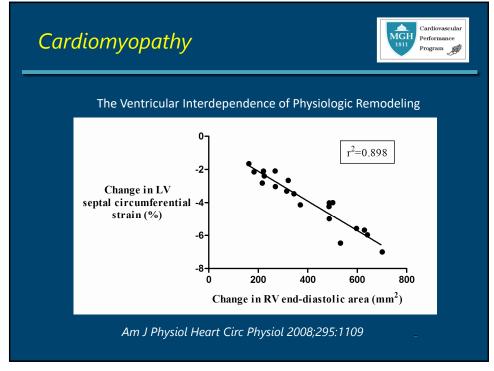
<u>32</u>


Arrhyt	.hmia: Al	Cartiovascular Performance Program		
1 st Author	Reference	Subjects	Primary Finding	
Karjalainen	BMJ 1998	Runners (n=100)	5.5 (1.3–24.4)	
Mont	EHJ 2002	Endurance (n=70)	71% with lone AF	
Elosua	Int J Card 2006	Endurance (n=51)	2.87 (1.39–7.05)	
Heidbuchel	Int J Card 2006	Endurance (n=53)	1.81 (1.10-2.98)	
Molina	Europace 2008	Runnners (n=39)	8.8 (1.26-61.3)	
Baldesberger	EHJ 2008	Cyclist (n=67)	10% AF in athletes	
Mont	Europace 2008	Endurance (n=48)	7.31 (2.33-22.9)	
Aizer	Am J Card 2009	PHS Database (n=16,921)	1.20 with ≥ 7 days/week ex.*	
Claessen	Heart 2011	Non-sel. Flutter RFA (n=58)	"Sportsmen" 50% of Lone Afl pop.	
Andersen	EHJ 2013	Nordic Skiers (n=52,755)	1.29 (1.04-1.61)*	

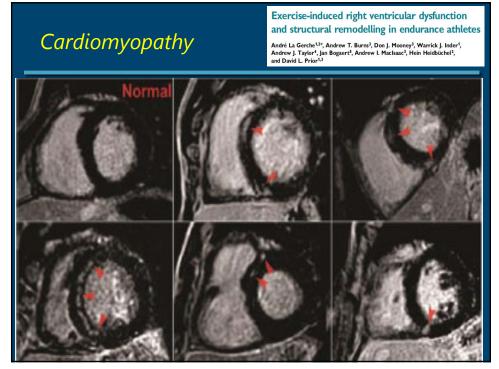
<u>33</u>

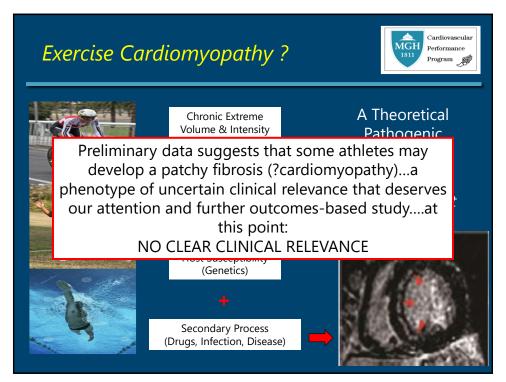


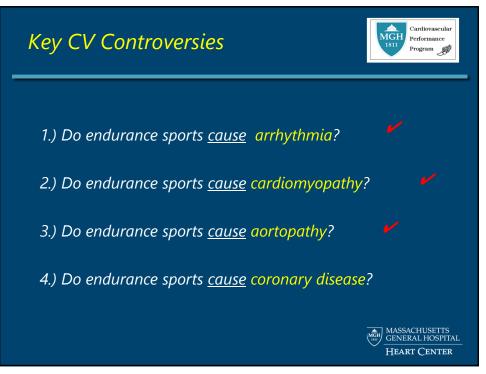




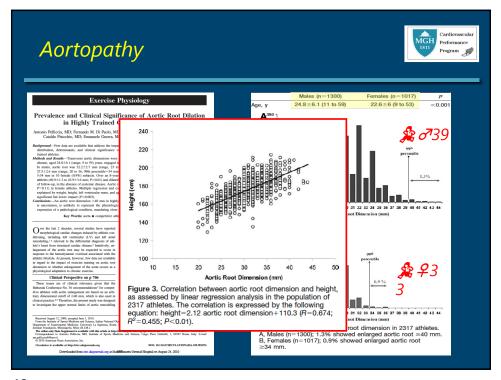
<u>37</u>




Cardiomy		y and extent of LGE	in veteran athle	les		Cardiovascular Performance Program
	Participant Age,	Percentage of Total		Perfusion		
	No. yr	LGE Mass, g	LGE Pattern	Defect	Interpretation	Location
NEW CONTRACTOR	1 67	18.9	CAD	Yes	Probable dual infarction	Septal and lateral wall
11 March 11	2 50 3 66	8	Non-CAD Non-CAD	No No	Probable myocarditis Nonspecific	Epicardial lateral wall Basal and midinsertion point
	4 60	3	Non-CAD	No	Nonspecific	Inferior insertion point mid and apical
	5 50	ĩ	Non-CAD	No	Nonspecific	Insertion point inferior mid/apical
	6 51	1	Non-CAD	No	Nonspecific	Inferior insertion point
		rmal	t al EH12			

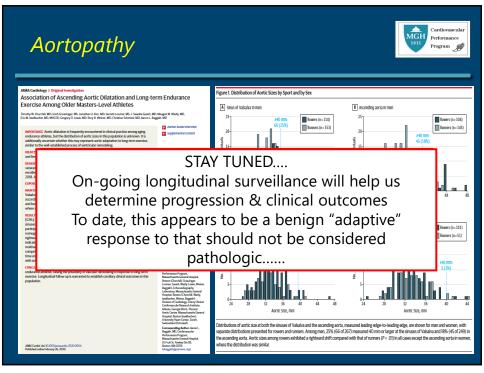

<u>41</u>

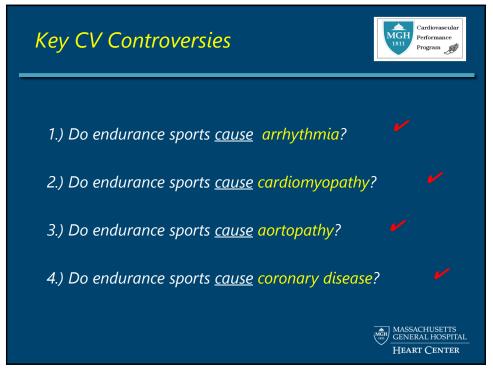
Cardio	туор	athy			Cardiov MGH 1811 Program			
fable I Baseline d	Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes André La Gerche ^{1,2*} , Andrew T. Burns ³ , Don J. Mooney ³ , Warrick J. Inder ¹ , Andrew J. Taylor ⁴ , Jan Bogaert ⁵ , Andrew I. MacIsaac ³ , Hein Heidbüchel ² , and David L. Prior ^{1,3}							
	• •							
	Overall	Marathon run	Endurance triathlon*	Alpine cycling	Ultra triathlon*	P-value		
Number of athletes	Overall 40	Marathon run 7	Endurance triathlon*	Alpine cycling	Ultra triathlon ^a 13	P-value		
						<i>P</i> -value		
Race distance (km)		7 42.2	11	9	13 3.8/180/42.2	P-value		
Race distance (km) Race completion time	40	7 42.2	11 1.9/90/21.1	9 207	13 3.8/180/42.2 10 h 52 min ± 1 h	P-value		
Race distance (km) Race completion time Ambient temperature (°C	40	7 42.2 2 h 59 min <u>+</u> 30 min	11 1.9/90/21.1 5 h 24 min <u>±</u> 25 min	9 207 8 h 5 min ± 42 min	13 3.8/180/42.2 10 h 52 min ± 1 h 16 min	P-value 0.014		
Race distance (km) Race completion time Ambient temperature (°C Age (years)	40	7 42.2 2 h 59 min ± 30 min 16–20	11 1.9/90/21.1 5 h 24 min ± 25 min 18–31	9 207 8 h 5 min ± 42 min 24-34	13 3.8/180/42.2 10 h 52 min ± 1 h 16 min 17–28			
Race distance (km) Race completion time Ambient temperature (°C Age (years) Male (%)	40 5) 37 ± 8	7 42.2 2 h 59 min ± 30 min 16-20 38 ± 3 86	11 1.9/90/21.1 5 h 24 min ± 25 min 18–31 <u>33 ± 7</u>	9 207 8 h 5 min ± 42 min 24-34 <u>44 ± 9</u>	13 3.8/180/42.2 10 h 52 min ± 1 h 16 min 17–28 34 ± 8	0.014		
Race distance (km) Race completion time Ambient temperature (°C Age (years) Male (%) BMI (kg/m ²)	40 5) 37 ± 8 90	7 42.2 2 h 59 min ± 30 min 16-20 38 ± 3 86	11 1.9/90/21.1 5 h 24 min ± 25 min 18–31 <u>33 ± 7</u> 91	9 207 8 h 5 min \pm 42 min 24-34 $\frac{44 \pm 9}{78}$	13 3.8/180/42.2 10 h 52 min ± 1 h 16 min 17–28 34 ± 8 100	0.014 0.378		
Number of athletes Race distance (km) Race completion time Ambient temperature (°C Age (years) Male (%) BMI (kg/m ²) % of predicted VO ₂ max Training (years)	40 -) -) -) -) -) 	7 42.2 2 h 59 min ± 30 min 16-20 38 ± 3 86 22.3 ± 1.6	11 1.9/90/21.1 5 h 24 min ± 25 min 18-31 <u>33 ± 7</u> 91 24.0 ± 2.1	9 207 8 h 5 min \pm 42 min 24-34 $\frac{44 \pm 9}{78}$ 23.9 \pm 21	13 3.8/180/42.2 10 h 52 min ± 1 h 16 min 17-28 34 ± 8 100 23.5 ± 1.3	0.014 0.378 0.306		

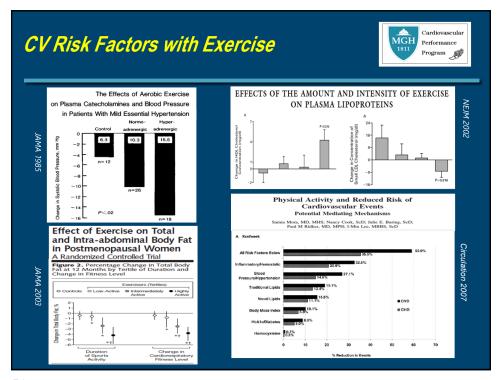


<u>43</u>

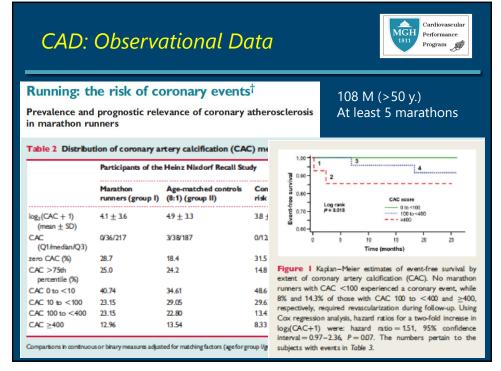
<u>45</u>


Aortopathy

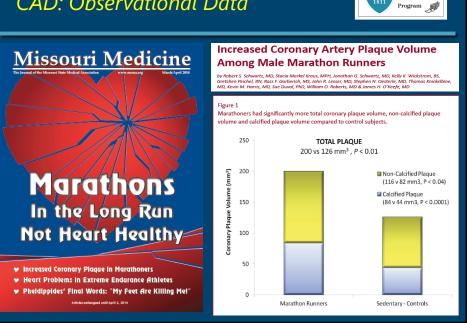

			and Subgroup Analyses of Aortic Roo ntrols at the Aortic Valve Annulus	t
	Study-Level Factor	No. of Subjects	Meta-Regression Analysis: Adjusted Difference at Aortic Valve Annulus, mm (95% Cl)	_
Background—The aorta is expo is not clear. We performed a increased aortic root dimensi	Participant type	2104	1.6 (0.2 to 3.0)*	t the aorta is larger in athlete vhethere athletes demonstrat
Methods and Results—We se language studies reporting t	Control Gender	493	Reference	gust 12, 2012, for English indently extracted athlete an
study characteristics. A multi studies reporting aortic root c aortic root dimensions at the directly with controls (n=727	Mixed/NA Female	830 1316 451	4.1 (0.4 to 7.8)* -2.6 (-7.3 to 2.1) Reference	ion analyses. We identified 7 s met our criteria by reportin 580). Athletes were compare root diameter measured at th
sinuses of Valsalva was 3.2 n aortic valve annulus was 1.6 Conclusions—Elite athletes hav annulus, but this difference is contineant dilutting likeling	Study location Non-US US Subgroup analysis Training type	2281 316	-1.5 (-4.0 to 1.0) Reference	whereas aortic root size at the ses of Valsalva and aortic valve etes should know that market
aortic root dilatation likely re 2013;127:791-798.)	Endurance athletes Strength athletes	799 425	2.2 (0.4 to 4.0)* 1.6 (-0.4 to 3.5)	ion to exercise. (Circulation
	Control subjects Cl indicates confider *P<0.05.	463 ice interval;	Reference NA, not available.	-


<u>47</u>

Aortopathy							
MACardiology Original Investigation	m Enduranco	Table 1. Participant Data and Select Echo		ameters			
Association of Ascending Aortic Dilatation and Long-term Endurance Exercise Among Older Masters-Level Athletes				Mean (SD)			
nothy W Churchill, MD: Erich Groezineer, MS: Jonathan H, Kim, MD: Garrett Loomer, MS: J. Savalla Guseh, MD:	Meagan M. Wasfy, MD;		Male Rowers Runners		Female Rowers Runners		
c M. Isselbacher, MD, MHCDS; Gregory D. Lewis, MD; Rory B. Weiner, MD; Ovistian Schmied, MD; Aaron L. Bag		Characteristic	(n = 114)	(n = 153)	(n = 114)	(n = 61)	
IMPORTANCE Artic dilatation is frequently encountered in clinical practice among aging	Author Audio Interview	sAge, y	63 (6)	59 (6)	62 (7)	59 (6)	
endurance athletes, but the distribution of aortic sizes in this population is unknown. It is	Supplemental content	Height, in	72 (3)	70(2)	66 (2)	65 (3)	
additionally uncertain whether this may represent aortic adaptation to long-term exercise, similar to the well-established process of ventricular remodeling.		Weight, kg	87 (13)	74 (8)	67 (10)	57 (8)	
OBJECTIVE To assess the prevalence of aortic dilatation among long-term masters-level male		BMI	25 (3)	24(2)	23 (3)	21 (2)	
and female athletes with about 2 decades of exercise exposure.		Blood pressure, mm Hg					
DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study evaluated aortic size in veteran endurance athletes. Masters-level rowers and runners aged 50 to 75 years were		Systolic	125 (15)	132 (15)	119 (13)	122 (14)	
enrolled from competitive athletic events across the United States from February to October 2018. Analysis began January 2019.		Diastolic	75 (9)	78 (9)	71 (9)	75 (10)	
EXPOSURES Long-term endurance exercise.		Medical history, No. (%)					
MAIN OUTCOMES AND MEASURES The primary outcome was aortic size at the sinuses of		Coronary artery disease	6 (5)	6 (4)	1(1)	1(2)	
Valsalva and the ascending aorta, measured using transthoracic echocardiography in accordance with contemporary guidelines. Aortic dimensions were compared with age, sex,		Hypertension	24 (21)	19 (12)	7 (6)	5 (8)	
and body size-adjusted predictions from published nomograms, and z scores were calculated where applicable.		Hyperlipidemia	26 (23)	31 (20)	19 (17)	8 (13)	
RESULTS Among 442 athletes (mean [SD] age, 61 [6] years; 267 men [60%]; 228 rowers		Diabetes mellitus	3 (3)	2 (1)	1(1)	2 (3)	
[52%]: 214 numers [48%]), clinically relevant aortic dilatation, defined by a diameter at sinuses of Valsalva or ascending aorta of 40 mm or larger, was found in 21% (n = 94) of all		Smoking (current or former)	18 (16)	19(12)	26 (23)	16 (26)	
participants (83 men [31%] and 11 women [6%]). When compared with published		Atrial fibrillation	10 (9)	2 (1)	4 (4)	0	
nomograms, the distribution of measured aortic size displayed a rightward shift with a rightward tail (all P < .001). Overall, 105 individuals (24%) had at least 1 z score of 2 or more,		Medications					
indicating an aortic measurement greater than 2 SDs above the population mean. In multivariate models adjusting for age, sex, body size, hypertension, and statin use, both elite		No medications	50 (44)	104 (68)	41 (37)	31 (51)	
competitor status (rowing participation in world championships or Olympics or marathon time under 2 hours and 45 minutes) and sport type (rowing) were independently associated with aortic size. CONCLESIONES AND BLEVANCE Clinically relevant aortic dilatation is common among aging		Antihypertensive medication	19 (17)	9 (6)	4 (4)	2 (3)	
		Statin	25 (22)	11(7)	3 (3)	1 (2)	
	Author Affiliations-Cardiovascular	Antiplatelet/anticoagulant	8(7)	7 (5)	6 (5)	0	
endurance athletes, raising the possibility of vascular remodeling in response to long-term exercise. Longitudinal follow-up is warranted to establish corollary clinical outcomes in this	Performance Program, Massachusetts General Hospital.	Athletic history					
population.	Boston (Drurchill, Grouzinger, Loomer, Gaseh, Wasty, Lewis, Weiner,	Cumulative years training	26 (11)	24(11)	20 (8)	22 (9)	
	Baggish), Echocardiography Laboratory, Massachusetts General	Annual training volume, h	244 (96)	243 (98)	239 (96)	237 (77)	
	Hospital, Boston (Churchill, Wasfy, Isselbacher, Weiner, Raggish)	No. of marathons ^a	6 (9)	32 (31)	7 (13)	33 (54)	
	Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia (Kim): Thoracic	Marathon time (personal best), min	NA	196 (23)	NA	222 (21)	
	Artanta, Georga (Um), Incrace Aortic Center, Manachusetts General Homital, Braton (Isselbarbar)	Select echocardiographic parameters					
	University Heart Center, Zarich, Switzerland (Schmied). Corresponding Author: Aaron L.	Left ventricular volume index, end-diastole, mL/m ²	66 (14)	75 (13)	55 (12)	64 (11)	
	Baggish, MD, Cardiovascular Performance Program,	Left ventricular mass index, g/m ²	75 (11)	78 (12)	68 (9)	73 (11)	
	Massachusetts General Hospital, 55 Fruit St. Yawkey Ste SB.	Lateral e', cm/s	7.9 (2.3)	9.4 (2.2)	8.5 (2.0)	9.0 (1.9)	
JAMA Cardiol. doi:10.1001/jamacardio.2020.0054 Published online February 26, 2020.	Boston, MA 02114 Cabaggish@partners.org).	Medial e'. cm/s	6.5 (2.0)	7.2 (1.6)	7.0 (1.6)	7.3 (1.5)	

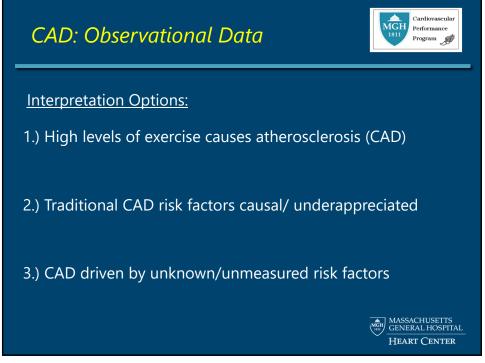


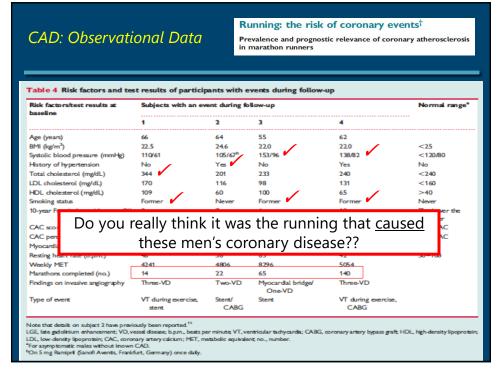
<u>49</u>



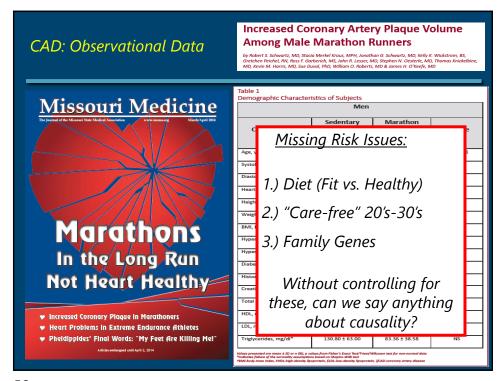
51

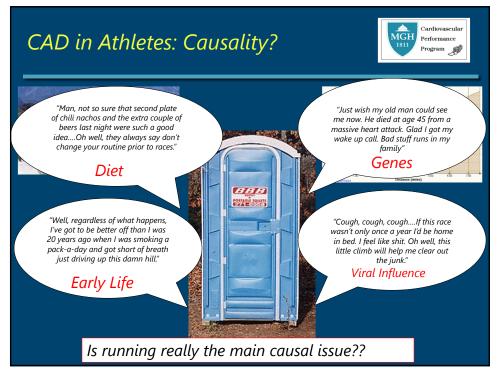
CAD: Observational Data

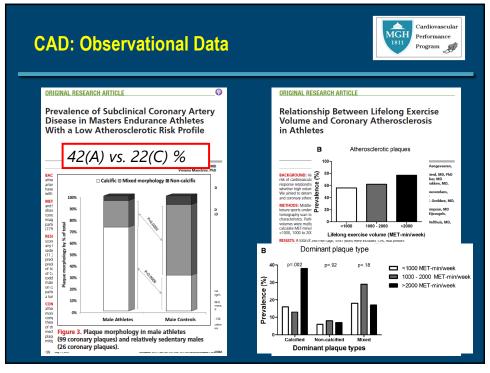


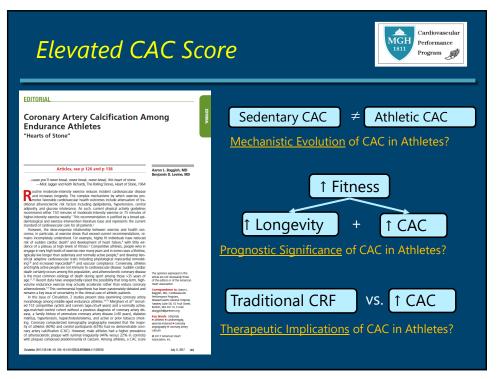

Cardiovascular

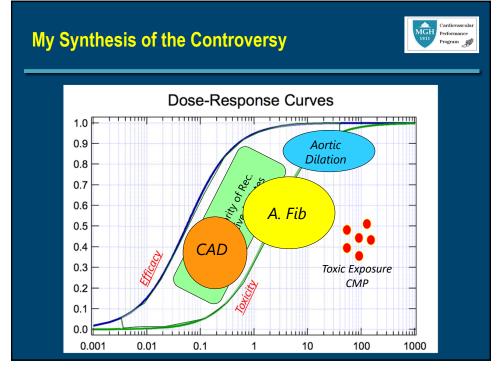
Performance

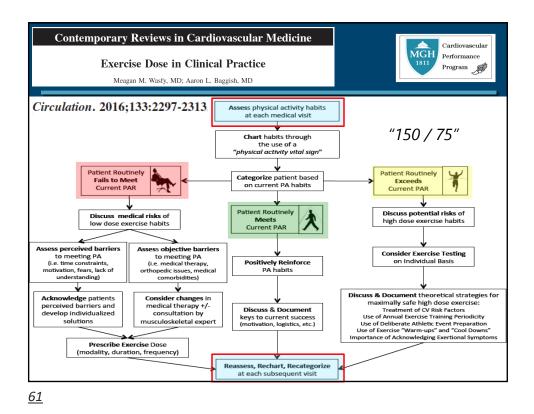

MGH 1811


<u>53</u>








<u>57</u>

<u>59</u>

